• 제목/요약/키워드: unsupervised detection

검색결과 173건 처리시간 0.024초

시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발 (High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing)

  • 변영기;김용일
    • 한국측량학회지
    • /
    • 제28권4호
    • /
    • pp.421-430
    • /
    • 2010
  • 영상분할은 관심대상이 되는 물체의 영역을 추출하기 위한 객체기반 영상분류의 전처리과정으로서 원격탐사 영상분석에서 그 중요성 날로 커지고 있다. 본 연구에서는 개선된 SRG(Seeded Region Growing) 기법과 영역병합과정을 이용하여 고해상도 영상분할을 위한 새로운 방법을 제안한다. 이를 위해 우선 QuickBird 융합영상에서 추출된 다중분광 에지정보를 이용하여 초기 시드포인트를 자동으로 추출하였다. 추출된 시드포인트에 영상의 기하학적인 정보와 분광정보를 반영할 수 있는 개선된 SRG 기법을 적용하여 초기 영상 분할을 수행하였다. 최종적으로 앞선 초기분할 결과 향상을 위해 분할된 영역의 평균분광정보를 활용하여 영역병합을 수행하여 최종분할결과를 도출하였다. 제안된 기법의 효율성을 평가하기 위해 무감독 영상분할 평가측정치를 이용하여 정확도 평가를 수행하였다. 실험결과 제안한 기법은 고해상도 영상분할에 유용하게 적용될 수 있으리라 판단된다.

메탄 가스 기반 가스 누출 위험 예측을 위한 다변량 특이치 제거 (Multivariate Outlier Removing for the Risk Prediction of Gas Leakage based Methane Gas)

  • 홍고르출;김미혜
    • 한국융합학회논문지
    • /
    • 제11권12호
    • /
    • pp.23-30
    • /
    • 2020
  • 본 연구에서는, 천연가스(NG) 데이터와 가스 관련 환경 요소 간의 관계를 기계학습 알고리즘을 사용하여 가스 누출 데이터를 직접 측정하지 않고 가스 누출 위험 수준을 예측하였다. 이번 연구는 서버가 제공하는 오픈 데이터인 IoT 기반 원격 제어 피카로(Picarro) 가스 센서 사양을 기반으로 사용했다. 천연 가스는 공기 중으로 누출이 되며, 대기 오염, 환경, 그리고 건강에 큰 문제가 된다. 본 연구에서 제안하는 방법은 천연 가스의 누출 위험 예측을 위한 랜덤 포레스트(Random Forest) 분류 기반 다변량 특이치 제거 방법이다. 비지도 k-평균 클러스터링 후에 실험 데이터 집합은 불균형 데이터이다. 따라서 우리는 제안된 모델이 중간과 높은 위험 수준을 가장 잘 예측할 수 있다는 점에 초점을 맞춘다. 이 경우 각 분류 모델에 대한 수신자 조작 특성(ROC) 곡선, 정확도, 평균 표준 오차(MSE)를 비교했다. 실험 결과로 정확도, 수신자 조작 특성의 곡선 아래 영역(AUC, Area Under the ROC Curve), MSE가 각각 MOL_RF의 경우 99.71%, 99.57%, 및 0.0016의 결과 값을 얻었다.

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.

Application and Potential of Artificial Intelligence in Heart Failure: Past, Present, and Future

  • Minjae Yoon;Jin Joo Park;Taeho Hur;Cam-Hao Hua;Musarrat Hussain;Sungyoung Lee;Dong-Ju Choi
    • International Journal of Heart Failure
    • /
    • 제6권1호
    • /
    • pp.11-19
    • /
    • 2024
  • The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored treatment. The accumulation of clinical information from patients with HF generates big data, which poses challenges for traditional analytical methods. To address this, big data approaches and artificial intelligence (AI) have been developed that can effectively predict future observations and outcomes, enabling precise diagnoses and personalized treatments of patients with HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find patterns, and make predictions without explicit instructions. ML can be supervised, unsupervised, or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with multiple layers to find complex patterns. These AI technologies have shown significant potential in various aspects of HF research, including diagnosis, outcome prediction, classification of HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data sources, such as electrocardiography, electronic health records, and imaging data, can enhance the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring aided by AI enable the earlier detection of HF and improved patient care. This review focuses on the rationale behind utilizing AI in HF and explores its various applications.

영화 비디오를 위한 클러스터링 기반의 계층적 장면 구조 구축 (Clustering-based Hierarchical Scene Structure Construction for Movie Videos)

  • 최익원;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권5호
    • /
    • pp.529-542
    • /
    • 2000
  • 최근 들어 멀티 미디어 정보의 사용이 급격히 증가하면서, 여러 미디어 형태 중 비디오가 많은 각광을 받으며, 다른 타입의 모든 미디어 정보를 하나의 자료 흐름으로 묶고 있다. 디지털 비디오의 실용 가능성은 크게 증대되고 있으나 비디오의 방대한 길이와 비구조적 형식 때문에 효과적인 비디오의 접근은 어려운 실정이다. 따라서 최근에 개발되는 영상과 비디오 정보 관리 시스템은 본 논문에서 제안하는 사용자의 최소 상호 작용과 비디오 구조의 명확한 정의를 필요로 한다. 본 논문에서는 사용자가 쉽게 비디오 내용을 요약한 형태로 보고, 임의로 접근 할 수 있도록 클러스터링 기반 비디오 계층 구조 구축 시스템을 제시한다. 제안된 시스템은 크게 샷 경계면 검출과 계층 구조 구축 단계로 이루어진다. 샷 경계면 검출 단계에서는 복수 특징들을 추출하고, 이웃한 프레임 쌍들에 대한상호관계를 고려한 시간 적응적 필터링 기법을 이용하여 오판될 수 있는 왜곡 성분을 제거함으로써 성능을 향상시켰다. 처리된 복수 특징들은 임계치를 필요로 하지 않는 k-means 클러스터링의 입력으로 사용되어 샷 경계면을 검출한다. 결과인 순차적인 샷 리스트는 시간 지역성과 장면 구조를 효과적으로 모델링하는 특성을 가진 지능적 비감독 클러스터링 기법에 의해 계층 구조로 표현된다. 실험은 정적 영화 비디오와 동적 영화 비디오를 대상으로 수행하였으며, 샷 경계면 검출에서는 평균적으로 95%의 정확성을 보였으며 장면 경계면 검출을 하는 비디오 계층 구조 구축에서도 어느 정도 정확한 장면 경계면 검출 결과를 보였다.

  • PDF

태풍 루사에 의한 강릉 사천천 주변 퇴적 환경 변화: 다중 시기 원격탐사 자료를 이용한 정보 분석 (Analysis on the Sedimentary Environment Change Induced by Typhoon in the Sacheoncheon, Gangneung using Multi-temporal Remote Sensing Data)

  • 박노욱;장동호;지광훈
    • 한국지구과학회지
    • /
    • 제27권1호
    • /
    • pp.83-94
    • /
    • 2006
  • 이 논문에서는 2002년 9월 태풍 루사로 인해 많은 재해 피해를 입은 강원도 강릉시 사천천 유역을 대상으로 다중 시기 원격탐사 자료를 이용하여 퇴적 지질환경 변화 정보를 추출하고 분석을 수행하였다. 다중 시기 자료에 대해 자동 임계치 설정 기반 무감독 변화 탐지 기법을 적용하여 여러 시기 및 센서별 변화 정보를 추출하였다. 변화탐지 결과, 제외지에서는 태풍 루사 직후 하천 탁도 변화, 습지의 수계 혹은 퇴적물로의 변화 및 계절적인 유량 차이에 의한 하도 노출 여부 등으로 변화지역이 나타났다. 주변 농경지에서는 홍수 및 산사태 등으로 인한 토사의 퇴적, 농지 개간 등으로 인한 변화가, 기타 지역에서는 제방 공사 등으로 인한 변화가 두드러지게 나타났다. 노한 야외 조사와 원격탐사 자료를 이용하여 미지형 분류도, 범람원 지역 지표 퇴적량 분포도 및 수해 지형 분류도를 작성하였다. 결론적으로 다중시기 고해상도 원격탐사 자료가 재해로 인한 변화 정보 추출에 유용하게 활용될 수 있을 것으로 기대되며, 이를 위해 고해상도 자료에 적합한 자료처리 기법 개발이 병행되어야 할 것으로 판단된다.

소나무재선충병 피해목 탐지를 위한 UAV기반의 식생지수 비교 연구 (A Study on the UAV-based Vegetable Index Comparison for Detection of Pine Wilt Disease Trees)

  • 정윤영;김상욱
    • 지적과 국토정보
    • /
    • 제50권1호
    • /
    • pp.201-214
    • /
    • 2020
  • 본 연구는 UAV 영상의 식생지수를 활용한 소나무재선충병 피해목 조기 탐지를 그 목적으로 하며, NDVI를 비롯한 대표적인 식생지수들을 선정하고 각각의 분류 정확도 비교분석을 통해 최적의 식생지수를 분석해보았다. 현장답사를 통하여 193개체의 소나무재선충병 피해목 위치데이터를 구축하고 동시에 다중분광 UAV 영상을 이용하여 4가지 식생지수 분석을 수행하였다. 무감독분류(K-Means)를 통하여 피해목을 분류하였고, 오차행렬(Confusion Matrix)를 이용하여 식생지수별 분류정확도를 비교·분석하였다. 연구의 결과를 요약하면 다음과 같다. 첫째 분류의 전체정확도는 NDVI (88.04%, Kappa계수 0.76) > GNDVI (86.01%, Kappa계수 0.72) > NDRE (77.35%, Kappa계수 0.55) > SAVI (76.84%, Kappa계수 0.54)순으로 분석되어 NDVI가 가장 높은 정확도를 보였으며, GNDVI가 거의 비슷한 수준의 분류정확도를 보였다. 둘째, NDVI 및 GNDVI 식생지수를 이용한 K-Means 무감독 분류방법으로 피해목의 판별이 어느 정도 가능한 것으로 판단된다. 특히 위 기법은 연산이 집약적이고 사용자의 개입이 적고 분석과정이 상대적으로 간단하여 피해목의 조기 탐지에 도움을 줄 수 있을 것으로 판단된다. 향후 시계열영상의 활용 또는 딥러닝기법의 추가 응용으로 분류정확도를 높일 수 있을 것으로 기대한다.

인공지능 기술의 통합보안관제 적용 및 사이버침해대응 절차 개선 (Application of Integrated Security Control of Artificial Intelligence Technology and Improvement of Cyber-Threat Response Process )

  • 고광수;조인준
    • 한국콘텐츠학회논문지
    • /
    • 제21권10호
    • /
    • pp.59-66
    • /
    • 2021
  • 본 논문에서는 통합보안관제에 인공지능 기술을 적용하고, 기존 보안관제와 인공지능 보안관제의 대응절차를 일원화한, 개선된 통합보안관제 절차를 새롭게 제안하였다. 현재의 사이버보안관제는 사람의 능력 수준에 의존도가 매우 높다. 그래서 사람에 의해 여러 이기종 장비에서 발생하는 다양한 로그를 분석하고, 급증하는 보안이벤트를 모두 분석·처리한다는 것은 사실상 무리가 있다. 그리고 문자열과 패턴 일치로 탐지하는 시그니처 기반의 보안장비는 APT(Advanced Persistent Threat)와 같은 고도화·지능화된 사이버공격을 정확히 탐지하기에 기능상 부족한 면이 있다. 이러한 문제들을 해결하기 위한 방안으로 인공지능 지도·비지도학습 기술을 사이버공격 탐지 및 분석에 적용하고, 이를 통해 수 없이 많이 발생하는 로그와 이벤트의 분석을 자동화하여, 고도화된 사이버공격의 지속적인 발생을 예측·차단할 수 있도록 하여 전반적인 측면에서 대응수준을 높였다. 그리고 보안관제에 인공지능 기술을 적용한 후 AI와 SIEM의 중복 탐지 등의 문제점을 일원화 된 침해대응 프로세스(절차)로 통합·해결함으로써 개선된 통합보안관제 서비스 모델을 새롭게 제안하였다.

몬테칼로 시뮬레이션 기반의 다수 지상 연성표적에 대한 최적 조준점 산출 (Monte Carlo Simulation based Optimal Aiming Point Computation Against Multiple Soft Targets on Ground)

  • 김종환;안남수
    • 한국시뮬레이션학회논문지
    • /
    • 제29권1호
    • /
    • pp.47-55
    • /
    • 2020
  • 본 논문은 드론봇 전투체계를 운용하여 전투전단의 적 보병부대 위치정보를 수집하였을 시, 지휘관이 요구하는 적 부대 피해수준을 충족하면서 적 보병부대를 신속하고 정확하게 타격하기 위하여, 보유한 화력체계의 살상범위를 기초로 최적의 사격발수 및 조준점 위치를 실시간 자동으로 산출하는 인공지능 알고리즘 연구이다. 이를 위해, 100m×200m 크기의 야지 전장환경에서 증강된 소대급 규모의 적 보병부대를 임의로 전개 및 모의하고, 약 15m의 살상범위를 갖는 가상의 화력체계에 대한 모델링을 수행하였으며, 각개 적병사의 무피해/경상 및 중상/사망 등의 피해유형 및 임무수행 가능여부를 모의하기 위하여 연성표적의 피해효과에 적용되는 칼튼피해함수를 적용하고 전장의 불확실성을 모의하기 위하여 몬테칼로 시뮬레이션을 수행하였다. 또한, 지휘관 의도에 부합된 적부대의 피해수준을 달성하기 위하여, 반복적인 모의 및 비지도학습의 k-mean clustering 기법을 적용하여 최적의 사격발수 및 조준점 위치를 0.4초 이내로 산출하였다. 본 연구에서 제안하는 방법은 드론봇 전투체계를 운용하는 대대급 규모의 전투부대에서 '탐지-결심-타격' 의사결정시간의 단축에 기여할 것으로 판단된다.

악성코드 패킹유형 자동분류 기술 연구 (A Study on Automatic Classification Technique of Malware Packing Type)

  • 김수정;하지희;이태진
    • 정보보호학회논문지
    • /
    • 제28권5호
    • /
    • pp.1119-1127
    • /
    • 2018
  • 대부분의 침해공격은 악성코드를 통해 발생하고 있으며, 침해공격으로 인한 피해는 사물인터넷/사이버 물리 시스템과 연결되면서 사이버공간에만 국한되지 않고 실생활에 큰 위협이 되고 있다. 이에 따라, 다양한 악성코드 동적분석, 정적분석기술들이 연구되었는데, 악성코드 동적분석들은 결과적인 악성행위를 쉽게 확인할 수 있어 널리 사용되었으나 VM 환경탐지 시 동작하지 않는 anti-VM 악성코드가 증가하면서 어려움을 겪고 있고, 악성코드 정적분석기술들은 코드자체를 해석할 수 있어 많은 정보를 얻을 수 있으나 난독화, 패킹 기술들이 적용되어 분석가를 어렵게 하고 있다. 본 논문에서는 정적분석기술의 주요 장애물인 난독화 유형을 자동식별, 분류하는 기술을 제안한다. 특히, 제안하는 모델을 통해 알려진 패커나 알려지지 않은 패커와 상관없이 일정한 기준에 의해 모든 악성코드를 분류할 수 있는 것이 가능하다. 악성코드 분류는 다양한 활용이 가능하지만, 예를 들면 악성코드 정적 feature에 기반하여 머신러닝 기반 분석을 할 때, 전체 파일에 대해 학습 및 분석하는 방식보다 악성코드 유형별 학습 및 분석이 더욱 효과적일 것이다. 이를 위해, PE구조에서 활용 가능한 feature에 대해 지도 학습 및 비지도 학습 방식의 모델을 설계했고, 98,000여개 샘플을 통해 결과 검증을 진행하였다.