• Title/Summary/Keyword: unstructured finite volume model

검색결과 66건 처리시간 0.021초

가상 압축성 기법을 이용한 삼차원 비압축성 유동해석 코드 개발 (Development of a 3-D Incompressible Flow Solver Based on an Artificial Compressibility Method)

  • 정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.614-617
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulations of three dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence free flow field at each physical time step. The one equation Spalart-Allmaras turbulence model has been adopted to solve the high-Reynolds number flow fields. This method has been applied to calculate the steady flow fields around submarine configurations and unsteady flow fields around a 3-D infinite cylinder.

  • PDF

한국형 기동헬기 블레이드의 제자리 비행 공력 해석 (Aerodynamic Calculations in Hover of KUH Rotor Blade)

  • 강희정;김승호;정문승;이희동;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.25-28
    • /
    • 2008
  • An aerodynamic calculation in hover of KUH main rotor blade is performed using a three-dimensional unstructured hybrid mesh viscous flow solver. The flow solver utilizes a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart-Allmaras one-equation turbulence model. A solution-adaptive mesh refinement technique is used for efficient capturing of the tip vortex. Calculations are performed at several operating conditions with varying collective pitch setting for KUH main rotor blade in hover. Good agreements are obtained between the present and other results using HOST and CAMRAD II in overall rotor performance. It is demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

  • PDF

2차원 비정렬 격자에서의 내재적 기법을 이용한 난류 유동 계산 (Calculation of Turbulent Flows Using an Implicit Scheme on Two-Dimensional Unstructured Meshes)

  • 강희정;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.29-37
    • /
    • 1997
  • An implicit viscous turbulent flow solver is developed for two-dimensional geometries on unstructured triangular meshes. The flux terms are discretized based on a cell-centered finite-volume formulation with the Roe's flux-difference splitting. The solution is advanced in time using an implicit backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with the Gauss-Seidel relaxation scheme. The effect of turbulence effects is approximated with a standard $k-{\varepsilon}$ two-equation model which is solved separately from the mean flow equations using the same backward-Euler time integration scheme. The triangular meshes are generated using an advancing-front/layer technique. Validations are made for flows over the NACA0012 airfoil and the Douglas 3-element airfoil. Good agreements are obtained between the numerical results and the experiment.

  • PDF

화염편모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석 (Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4$-Air Diffusion Flame)

  • 김군홍;김후중;김용모;김성구
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.3-9
    • /
    • 2003
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept for simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

  • PDF

Hybrid RANS/LES simulations of a bluff-body flow

  • Camarri, S.;Salvetti, M.V.;Koobus, B.;Dervieux, A.
    • Wind and Structures
    • /
    • 제8권6호
    • /
    • pp.407-426
    • /
    • 2005
  • A hybrid RANS/LES approach, based on the Limited Numerical Scales concept, is applied to the numerical simulation of the flow around a square cylinder. The key feature of this approach is a blending between two eddy-viscosities, one given by the $k-{\varepsilon}$ RANS model and the other by the Smagorinsky LES closure. A mixed finite-element/finite-volume formulation is used for the numerical discretization on unstructured grids. The results obtained with the hybrid approach are compared with those given by RANS and LES simulations for three different grid resolutions; comparisons with experimental data and numerical results in the literature are also provided. It is shown that, if the grid resolution is adequate for LES, the hybrid model recovers the LES accuracy. For coarser grid resolutions, the blending criterion appears to be effective to improve the accuracy of the results with respect to both LES and RANS simulations.

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

2-D URANS에 의한 원형 실린더 주위의 와류유출 유동 수치해석 (Flow Simulation past a Circular Cylinder by 2-D URANS)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제9권4호
    • /
    • pp.48-54
    • /
    • 2004
  • Vortex-shedding flows past a circular cylinder for 200≤ Re ≤ 5000 are numerically simulated with the PowerCFD code, using a finite volume method and an unstructured grid system, developed by the author. The simulation is peformed by solving the unsteady 2-D Wavier-Stokes equations with both no model and turbulence model. The resulting Reynolds number dependence of the Strouhal number and of the drag and lift coefficients is compared with both experiments and previous numerical results. It is found that, in the range of 200≤ Re ≤ 5000 the calculation method with a turbulence model is capable of producing reasonably more accurate results than that with no model for the main practically relevant parameters such as Strouhal number, drag and lift coefficients.

화염편 및 조건평균법 모델을 이용한 재순환 비예혼합 난류 화염장의 해석 (Flamelet and Conditional Moment Closure Modeling for the Turbulent Recirculating Nonpremixed Flames)

  • 김군홍;강성모;김용모
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1616-1624
    • /
    • 2004
  • The conditional moment closure(CMC) model has been implemented in context with the unstructured-grid finite-volume method which efficiently handle the physically and geometrically complex turbulent reacting flows. The validation cases include a turbulent nonpremixed CO/$H_2$/$N_2$ Jet flame and a turbulent nonpremixed $H_2$/CO flame stabilized on an axisymmetric bluff-body burner. In terms of mean flame field, minor species and NO formation, numerical results has the overall agreement with expermental data. The detailed discussion has been made for the turbulence-chemistry interaction and NOx formation characteristics as well as the comparative performance for CMC and flamelet model.

Flamelet 및 CMC 모델을 이용한 재순환 비예혼합 난류 화염장의 해석 (Flamelet and CMC Modeling for the Turbulent Recirculating Nonpremixed Flames)

  • 김군홍;강성모;김용모;김성구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.75-82
    • /
    • 2004
  • The conditional moment closure(CMC) model has been implemented in context with the unstructured-grid finite-volume method which efficiently handle the physically and geometrically complex turbulent reacting flows. The validation cases include a turbulent nonpremixed $CO/H_2/N_2$ Jet flame and a turbulent nonpremixed $H_2/CO$ flame stabilized on an axisymmetric bluff-body burner. In terms of mean flame field, minor species and NO formation, numerical results has the overall agreement with expermental data. The detailed discussion has been made for the turbulence-chemistry interaction and NOx formation characteristics as well as the comparative performance for CMC and flamelet model.

  • PDF

Non-Adiabatic Flamelet Modeling for Combustion Processes of Oxy-Natural Gas Flame

  • Kim, Gun-Hong;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1781-1789
    • /
    • 2005
  • In order to realistically predict the combustion characteristics of the oxy-fuel flame, the present study employs the non-adiabatic flame let approach. In this combustion model, the detailed equilibrium chemistry is utilized to accurately account for the thermal dissociation as well as to properly include the radiative cooling effects on the detailed chemistry. Numerical results indicate that the present approach has the capability to correctly capture the essential features and precise structure of the oxy-fuel flames. In this work, the detailed discussion has been made for the characteristics of oxy-fuel flames, the capability and defect of the present approach and also uncertainties of experimental data.