• 제목/요약/키워드: unstructured data mining

검색결과 180건 처리시간 0.021초

비정형데이터를 활용한 건축현장 품질성과 평가 모델 개발 (Crafting a Quality Performance Evaluation Model Leveraging Unstructured Data)

  • 이기석;송태근;유위성
    • 한국건축시공학회지
    • /
    • 제24권1호
    • /
    • pp.157-168
    • /
    • 2024
  • 최근 국내 건축현장에서 붕괴사고가 계속해서 발생하고 있어 시공 및 자재 품질 점검과 관리에 대한 공사감리의 중요성이 증가하고 있다. 현행 제도 및 기준에 의하면, 공사감리 업무는 주요 책임이 있는 감리자가 건축현장에서 진행되고 있는 시공 품질, 자재 품질, 재시공 이력 등이 상세하게 기술하여 공사감리보고서를 작성한다. 이러한 문서는 대표적인 비정형데이터로 건축현장에서 생성되고 있는 데이터의 80%의 비중을 차지하고 있으며, 건축현장의 품질정보가 상세하게 기록되어있다. 본 연구에 건축현장에서 발생하고 있는 공사감리보고서를 텍스트마이닝으로 전처리 후 감성사전을 구축하여 품질성과 수준을 평가하고 계량화할 수 있는 SL-QPA 모델을 제안하였다. 모델에서 산정된 성과 점수와 법적 기준에 의한 지표와의 피어슨 상관관계 분석하고, 상관계수에 대한 일원분산분석 결과는 통계적으로 유의미하였다. 제안된 SL-QPA 모델은 현행 건축현장 품질성과 진단에 상호 보완적으로 활용될 수 있고, 공사단계에서 연속적으로 생성되는 비정형데이터를 활용하여 점검 및 관리 활동의 적시성을 향상시킬 것으로 기대된다.

빅데이터 분석기법을 활용한 숙박업체 운영 개선 방안에 대한 연구 (A Study on Improvement of Pension Operation and Management using Big Data Analysis Techniques)

  • 윤선희
    • 문화기술의 융합
    • /
    • 제7권4호
    • /
    • pp.815-821
    • /
    • 2021
  • 빅데이터의 장점은 인터넷상의 대량의 데이터를 수집하여 가치 있는 데이터를 정제하여 사용하는 것이다. 즉, 비정형 데이터를 사용자가 필요한 관점에서 분석하여 활용할 수 있도록 가공하는 것이다. 본 논문은 실생활에 밀접하게 적용되어 마케팅에 활용할 수 있는 비정형 데이터를 기반으로 하며 실험 대상은 서울에서 한 시간 거리의 수도권에 있는 숙박업체를 모델로 하여 빅데이터를 사용자가 필요한 관점에서 분석하여 매출 증대, 비용 감소 및 수익률 증가 등의 효과를 나타낸 실험으로 소셜네트워크 등의 빅데이터를 분석하는 과정에서 입력되는 데이터가 숙박 정보로써 활용할 수 있는 데이터인지를 판별하여 필터링하는 시스템을 제안하여 숙박률의 향상 및 공실률을 감소시킬 수 있는 마케팅 전략을 구축하고자 한다.

소셜 미디어 데이터 분석을 활용한 빅데이터에 대한 인식 변화 비교 분석 (A Comparative Analysis of Cognitive Change about Big Data Using Social Media Data Analysis)

  • 윤유동;조재춘;허윤아;임희석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권7호
    • /
    • pp.371-378
    • /
    • 2017
  • 최근 모바일의 확산과 웹 서비스의 도입으로 온라인 상에 데이터가 급격히 증가하게 되어 다양한 분야에서 활용되고 있다. 특히, 빅데이터 분야에서 소셜 미디어의 등장은 축적되는 비정형 데이터의 양이 급격하게 증가하는 계기가 되었다. 이러한 비정형 데이터로부터 의미 있는 정보를 추출하기 위해 다양한 분야에서 빅데이터 기술에 대한 관심이 증가하고 있다. 빅데이터는 선진국을 중심으로 다양한 분야에서 핵심 자원으로서 중요성이 부각되고 있다. 그러나 빅데이터의 긍정적인 미래 전망과 함께 데이터의 침해 및 개인정보 보호에 대한 우려가 지속적으로 언급되고 있다. 이와 같이 긍정적인 시각과 부정적인 시각이 공존하는 빅데이터에 대해 사람들의 의견을 분석하는 연구는 현재 매우 부족한 상황이다. 이에 본 연구에서는 텍스트 마이닝을 활용하여 소셜 미디어에서 수집한 비정형 데이터를 기반으로 빅데이터에 대한 사람들의 인식 변화를 비교하였다. 텍스트 마이닝 결과, 국내 빅데이터에 대한 연도별 키워드와 함께 시간의 흐름에 따라 감소하는 긍정적인 의견과 증가하는 부정적인 의견이 관찰되었다. 그리고 이러한 분석 결과를 기반으로 국내 빅데이터에 대한 흐름을 예측할 수 있었다.

텍스트 마이닝 알고리즘을 이용한 기상청 기상연감 자료 분석 (Analysis of the Yearbook from the Korea Meteorological Administration using a text-mining agorithm)

  • 선현석;임창원;이영섭
    • 응용통계연구
    • /
    • 제30권4호
    • /
    • pp.603-613
    • /
    • 2017
  • 최근 들어 많은 사람들이 자신의 관심사를 SNS에 게시하거나 인터넷과 컴퓨터의 기술 발달로 디지털 형태의 문서저장이 가능하게 됨으로써 생성되는 텍스트 자료의 양이 폭발적으로 증가하게 되었다. 이에 따라 수많은 문서 자료로부터 가치 있는 정보를 창출하기 위한 기술의 요구 또한 증가하고 있다. 그러나 대부분 비정형 형태로 구성되어 있는 텍스트 기반의 자료는 기존의 통계 분석이나 데이터 마이닝 기법을 적용하기에 부적합하기 때문에 텍스트 마이닝 기법이 사용되고 있다. 본 연구에서는 비정형 자료 분석 기법 중 하나인 텍스트 마이닝 기법으로 기상청 기상연감 자료를 분석하였다. 먼저 전처리 과정을 통하여 용어사전을 구축하고, 용어-문서 행렬을 생성하였다. 그리고 이것을 사용하여 연도별 용어 빈도수를 계산하고, 자주 나타나는 단어들에 대하여 상대도수의 변화를 관찰하였다. 또한 회귀 분석 기법을 사용하여 증가추세와 감소추세를 보이는 용어들을 파악하였다. 이러한 분석으로 기상청 기상연감 문서에서의 트렌드를 파악하고, 이를 통해 이슈가 되었던 기상 관련 소식과 기상현황, 그리고 기상청이 중점으로 하고 있는 업무 현황의 트렌드를 파악하였다. 본 연구를 통해 기상업무 분석 및 효율화에 도움을 주고 기상정책에 반영할 수 있는 유용한 정보를 이끌어내고자 하였다.

토너먼트 기반의 빅데이터 분석 알고리즘 (An Algorithms for Tournament-based Big Data Analysis)

  • 이현진
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.545-553
    • /
    • 2015
  • 모든 데이터는 그 자체로 가치를 가지고 있지만, 실세계에서 수집되는 데이터들은 무작위적이며 비구조화되어 있다. 따라서 이러한 데이터를 효율적으로 활용하기 위해서 데이터에서 유용한 정보를 추출하기 위한 데이터 변환과 분석 알고리즘들을 사용하게 된다. 이러한 목적으로 사용되는 것이 데이터 마이닝이다. 오늘날에는 데이터를 분석하기 위한 다양한 데이터 마이닝 기법뿐만 아니라, 대용량 데이터를 효율적으로 처리하기 위한 연산 요건과 빠른 분석 시간을 필요로 하고 있다. 대용량 데이터를 저장하기 위하여 하둡이 많이 사용되며, 이 하둡의 데이터를 분석하기 위하여 맵리듀스 프레임워크를 사용한다. 본 논문에서는 단일 머신에서 동작하는 알고리즘을 맵리듀스 프레임워크로 개발할 때 적용의 효율성을 높이기 위한 토너먼트 기반 적용 방안을 제안하였다. 본 방법은 다양한 알고리즘에 적용할 수 있으며, 널리 사용되는 데이터 마이닝 알고리즘인 k-means, k-근접 이웃 분류에 적용하여 그 유용성을 보였다.

Opinion-Mining Methodology for Social Media Analytics

  • Kim, Yoosin;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.391-406
    • /
    • 2015
  • Social media have emerged as new communication channels between consumers and companies that generate a large volume of unstructured text data. This social media content, which contains consumers' opinions and interests, is recognized as valuable material from which businesses can mine useful information; consequently, many researchers have reported on opinion-mining frameworks, methods, techniques, and tools for business intelligence over various industries. These studies sometimes focused on how to use opinion mining in business fields or emphasized methods of analyzing content to achieve results that are more accurate. They also considered how to visualize the results to ensure easier understanding. However, we found that such approaches are often technically complex and insufficiently user-friendly to help with business decisions and planning. Therefore, in this study we attempt to formulate a more comprehensive and practical methodology to conduct social media opinion mining and apply our methodology to a case study of the oldest instant noodle product in Korea. We also present graphical tools and visualized outputs that include volume and sentiment graphs, time-series graphs, a topic word cloud, a heat map, and a valence tree map with a classification. Our resources are from public-domain social media content such as blogs, forum messages, and news articles that we analyze with natural language processing, statistics, and graphics packages in the freeware R project environment. We believe our methodology and visualization outputs can provide a practical and reliable guide for immediate use, not just in the food industry but other industries as well.

비정형데이터 수집을 통한 드라마 시청률 연관어 분석 (Analysis of drama viewership related words through unstructured data collection)

  • 강선경;이현창;신성윤
    • 한국정보통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1567-1574
    • /
    • 2017
  • 본 논문에서는 드라마의 시청률에 영향을 미치는 연관어 분석을 위해 정형화된 데이터와 비정형화된 데이터를 분석하는 내용이다. 정형화된 데이터 수집은 각 방송사의 드라마정보, 인물정보, 방송정보, 시청률정보라는 4가지 영역에서 총 19가지항목을 수집하였다. 비정형데이터는 각 방송사에서 드라마별로 운영되고 있는 게시판과 방영전 블로그와 방영후 블로그로부터 크롤링기법을 이용하여 수집하였다. 수집된 정형데이터로부터 각 방송사별 4가지 영역별에 따른 차이를 비교한 결과 방송사별 서로 유사한 결과 값을 보이고 있었다. 그리고 각 방송사의 드라마별 게시판과 블로그에서 수집된 비정형데이터로부터 출현빈도의 상관관계 분석을 통해 관련 연관어를 7개 도출하였다. 도출된 연관어는 신뢰성 분석을 통해 이루어졌다.

교수-학습지원시스템에서 학습자 질의응답 자동분류를 위한 토픽 모델링 (Topic modeling for automatic classification of learner question and answer in teaching-learning support system)

  • 김경록;송혜진;문남미
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권2호
    • /
    • pp.339-346
    • /
    • 2017
  • 기사와 댓글, 질의응답과 같은 비정형 데이터에 기반한 텍스트 분석에 대한 관심이 증가하고 있다. 이는 사람들의 견해인 비정형 텍스트 데이터로부터 특징을 파악하고, 평가, 예측 및 추천에 활용할 수 있기 때문이다. TEL 분야에서도 MOOC 서비스의 확대로 교수학습지원시스템 기반 토론, 질의응답 서비스를 자동화하기 위한 관심이 증가하고 있다. 시스템에 축적된 질의응답 데이터를 기반으로 질의 토픽을 생성하고, 새로운 질의에 대해 토픽을 자동분류하기 위해서이다. 따라서 본 연구에서는 새로운 질의 토픽을 자동분류 할 수 있도록 LDA기법을 활용한 토픽 모델링을 제안하고자 한다. 이를 바탕으로 질의 토픽 사전을 생성하고 새로운 질의에 대해 토픽을 자동분류 할 수 있다. 일부 질의에서는 0.7 이상의 높은 자동 분류를 보였으며, 새로운 질의가 여러 토픽에 포함될수록 좀 더 좋은 자동분류 결과를 보였다.

Using a Cellular Automaton to Extract Medical Information from Clinical Reports

  • Barigou, Fatiha;Atmani, Baghdad;Beldjilali, Bouziane
    • Journal of Information Processing Systems
    • /
    • 제8권1호
    • /
    • pp.67-84
    • /
    • 2012
  • An important amount of clinical data concerning the medical history of a patient is in the form of clinical reports that are written by doctors. They describe patients, their pathologies, their personal and medical histories, findings made during interviews or during procedures, and so forth. They represent a source of precious information that can be used in several applications such as research information to diagnose new patients, epidemiological studies, decision support, statistical analysis, and data mining. But this information is difficult to access, as it is often in unstructured text form. To make access to patient data easy, our research aims to develop a system for extracting information from unstructured text. In a previous work, a rule-based approach is applied to a clinical reports corpus of infectious diseases to extract structured data in the form of named entities and properties. In this paper, we propose the use of a Boolean inference engine, which is based on a cellular automaton, to do extraction. Our motivation to adopt this Boolean modeling approach is twofold: first optimize storage, and second reduce the response time of the entities extraction.

빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축 (Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics)

  • 조남옥;신경식
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.33-56
    • /
    • 2016
  • 대부분의 부도 예측에 관한 연구는 재무 변수를 중심으로 통계적 방법 또는 인공지능 기법을 적용하여 부도 예측 모형을 구축하였다. 그러나 재무비율과 같은 회계 정보를 이용한 부도 예측 모형은 재무 제표 결산 시점과 신용평가 시점 간 시차를 고려하지 않을 뿐만 아니라 해당 산업의 경제적 상황과 같은 외부 환경적인 요소를 반영하기 어렵다는 한계점이 존재하였다. 기업의 부도 여부를 예측하기 위해 정량 정보인 재무 변수만을 이용하는 것에 한계가 있음에도 불구하고 정성 정보를 부도 예측 모형에 반영한 연구는 아직 미흡한 실정이다. 본 연구에서는 재무 변수를 이용하는 기존 부도 예측 모형의 성과를 개선하기 위해 빅데이터 기반의 정성 정보를 추가적인 입력 변수로 활용하는 부도 예측 모형을 제안하였다. 제안 모형의 성과 향상은 정성 정보를 예측 모형에 통합시키기에 적합한 형태로 정보의 유형을 변환시킬 수 있는가에 따라 달려있다. 이에 본 연구에서는 정성 정보 처리를 위한 방법으로 빅데이터 분석 기법 중 하나인 텍스트 마이닝(Text Mining)을 활용하였다. 해당 산업과 관련된 경제 뉴스 데이터로부터 경제 상황에 대한 감성 정보를 추출하기 위해 도메인 중심의 감성 어휘 사전을 구축하고, 구축된 어휘 사전을 기반으로 감성 분석(Sentiment Analysis)을 수행하였다. 형태소 분석 등을 포함한 텍스트 전처리 과정을 거쳐 감성 어휘를 추출하고, 각 어휘에 대한 극성 및 감성 점수를 부여하였다. 분석 결과, 전통적 부도 예측 모형에 경제 뉴스 데이터에서 도출한 정성 정보를 반영하는 것은 모형의 성과를 개선하는 것으로 나타났다. 특히, 경제 상황에 대한 부정적 감정이 기업의 부도 여부를 예측하는 데 더욱 효과적임을 알 수 있었다.