• 제목/요약/키워드: unsteady aerodynamic forces

검색결과 67건 처리시간 0.027초

Nonparametric modeling of self-excited forces based on relations between flutter derivatives

  • Papinutti, Mitja;Cetina, Matjaz;Brank, Bostjan;Petersen, Oyvind W.;Oiseth, Ole
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.561-573
    • /
    • 2020
  • Unsteady self-excited forces are commonly represented by parametric models such as rational functions. However, this requires complex multiparametric nonlinear fitting, which can be a challenging task that requires know-how. This paper explores the alternative nonparametric modeling of unsteady self-excited forces based on relations between flutter derivatives. By exploiting the properties of the transfer function of linear causal systems, we show that damping and stiffness aerodynamic derivatives are related by the Hilbert transform. This property is utilized to develop exact simplified expressions, where it is only necessary to consider the frequency dependency of either the aeroelastic damping or stiffness terms but not both simultaneously. This approach is useful if the experimental data on aerodynamic derivatives that are related to the damping are deemed more accurate than the data that are related to the stiffness or vice versa. The proposed numerical models are evaluated with numerical examples and with data from wind tunnel experiments. The presented method can evaluate any continuous fitted table of interpolation functions of various types, which are independently fitted to aeroelastic damping and stiffness terms. The results demonstrate that the proposed methodology performs well. The relations between the flutter derivatives can be used to enhance the understanding of experimental modeling of aerodynamic self-excited forces for bridge decks.

항공기 탑재체의 분리 후 공력 특성 변화 효과 (Changing Effect in Aerodynamic Characteristics of a Captive Body Separated from Aircraft)

  • 조환기;이상현;강치행
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.397-404
    • /
    • 2011
  • The aerodynamic characteristics of a separated captive body in flow field around aircraft are studied to observe aerodynamic stability for safe separation from aircraft. Since the captive body separated from aircraft is initially exposed to unsteady flow pattern, the change of aerodynamic forces and moments should be measured to analyze how the flow pattern affects on the captive body at the vicinity of aircraft. Aerodynamic forces and moments of the separated captive body are measured at selected positions along predictable dropping trajectories. The measuring trajectories, generated by the free drop test of the dropping model in the wind tunnel, are consisted of 9 possible lines by free dropped trajectories. Experimental results show that the aerodynamic forces and moments are significantly varied with the distance between the captive body and aircraft. In conclusion, the change of aerodynamic characteristics within flow field around aircraft should be considered to simulate trajectories of the separated captive body from aircraft.

Aerodynamic and Aeroelastic Tool for Wind Turbine Applications

  • Viti, Valerio;Coppotelli, Giuliano;De Pompeis, Federico;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.30-45
    • /
    • 2013
  • The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.

The Effect of Folding Wing on Aerodynamics and Power Consumption of a Flapping Wing

  • Lee, Seunghee;Han, Cheolheui
    • International Journal of Aerospace System Engineering
    • /
    • 제3권2호
    • /
    • pp.26-30
    • /
    • 2016
  • Experimental study on the unsteady aerodynamics analysis and power consumption of a folding wing is accomplished using a wind tunnel testing. A folding wing model is fabricated and actuated using servo motors. The flapping wing consists of an inboard main wing and an outboard folding wing. The aerodynamic forces and consumed powers of the flapping wing are measured by changing the flapping and folding wings inside a low-speed wind tunnel. In order to calculate the aerodynamic forces, the measured forces are modified using static test data. It was found that the effect of the folding wing on the flapping wing's total lift is small but the effect of the folding wing on the total thrust is larger than the main wing. The folding motion requires the extra use of the servo motor. Thus, the amount of the energy consumption increases when both the wings are actuated together. As the flight speed increases, the power consumption of the folding wing decreases which results in energy saving.

ZAERO를 활용한 서보공력탄성학적 안정성 해석기법 연구 (Study on the Aeroservoelastic Stability Analysis with ZAERO)

  • 노홍기;배재성;황재혁
    • 항공우주시스템공학회지
    • /
    • 제14권5호
    • /
    • pp.1-8
    • /
    • 2020
  • 구조적 특성 및 공력의 상호작용과 조종면 작동기의 제어 시스템의 영향을 고려한 서보공력탄성 해석을 수행하였다. 공탄성 안정성 해석을 위해서 선행되어야 하는 구조모델의 자유진동 해석은 유한요소 해석 프로그램 MSC Nastran을 사용하였다. 비정상 공기력 계산에 ZAERO를 사용하였다. 비정상 공기력 검증에 Doublet Hybrid Method를 사용하였다. Karpel의 최소상태근사법을 이용하여 주파수 영역의 공기력을 라플라스 영역으로 근사하였다. 공탄성 상태방정식을 구동기의 동역학 상태방정식과 결합하여 서보 공탄성 모델의 상태공간방정식을 구성하였다. 고세장비 모델의 승강타 입력에 따른 안정성 해석을 수행하였다. 근궤적법과 시간적분법을 사용하여 주파수영역과 시간영역에서의 서보공탄성 안정성 해석을 수행하였다.

능동 난류 생성을 통한 장대 교량의 공력 특성 비교 (Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences)

  • 이승호;권순덕
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.341-349
    • /
    • 2011
  • 본 연구에서는 다양한 풍동실험을 통하여 기류 조건에 따른 트윈박스 거더 교량의 공기역학적 특성을 파악하는데 그 목적이 있다. 이를 위하여 자연적인 난류를 생성할 수 있는 능동 난류 발생장치를 개발하였고 검증하였다. 그리고 능동 난류 및 격자 난류 조건하에서 정적공기력, 비정상공기력 그리고 버페팅 응답 측정 실험을 수행하였다. 풍동실험 결과를 보면, 난류 적분길이는 교량의 정적공기력과 $A_1^*$를 제외한 플러터계수에는 영향을 주지 않는 것으로 나타났다. 그리고 난류 강도는 비정상공기력에 일부 영향을 미치고, 난류 적분길이 또한 일부 수직 방향 성분에 영향을 주는 것으로 나타났다.

신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구 (Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil)

  • 강승온;전상욱;박경현;전용희;이동호
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.425-432
    • /
    • 2009
  • 본 연구에서는 오일러 CFD코드에서 얻은 데이터를 이용하여 2차원 익형의 비정상 공력하중을 모델링하고 예측할 수 있는 신경망의 능력을 확인하였다. 신경망 모델은 감독자 관리 학습을 기반으로 하여 르벤버그-마쿼트 알고리즘, 그리고 여기에 유전알고리즘을 결합시킨 혼합형 유전알고리즘을 사용하여 구성하고 각 경우에 대하여 그 효율성을 비교 분석하였다. 복잡한 시스템을 모사하는 신경망을 학습시키는 데는 혼합형유전알고리즘이 더 효율적이라는 것을 보였으며 신경망모델에 의한 2차원 익형의 비정상공력하중 예측결과 실제 수치결과와 비교적 정확하게 일치하여 신경망 모델이 축소모델로서의 기능을 발휘하는 것을 입증하였다.

공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향 (Rotordynamci Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings)

  • 김태호;이용복;김창호;김광호;이남수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.191-198
    • /
    • 2002
  • Oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of the conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compression with two impellers at operating speed, 39,000rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rate. Correlation between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly developed in aerodynamic unsteady region. Thus, these results show that it is beneficial to design high speed rotating turbomachinery considering coupling effect between aerodynamic instability and rotordynamic force.

  • PDF

동적 실속을 이용한 Flapping-Airfoil의 추력 발생 (Thrust Generation on Flapping-Aifoil by Dynamic Stall)

  • 이정상;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.35-40
    • /
    • 2002
  • This paper deals with a thrust generation on flapping-airfoil by dynamic stall. Dynamic stall refers to a series of complicated aerodynamic phenomena accompanied by a stall delay in unsteady motion. In most cases, once it occurs, the dynamic stall may lead to an abrupt fluctuation of aerodynamic forces. An inverse $k\acute{a}rm\acute{a}n$ vortex has been considered as a main reason for a thrust generation. In this paper, however, we have found out that a thrust is closely related to reduced frequency and leading edge vortex in addition to inverse Karman vortex. In order to certify our opinion, picking and plunging motions were calculated with the parameter of amplitude and frequency by using the unsteady, incompressible Navier-Stokes flow solver with a two-equation turbulence model. For more efficient computation, it is parallelized by MPI programming method.

  • PDF

A dragonfly inspired flapping wing actuated by electro active polymers

  • Mukherjee, Sujoy;Ganguli, Ranjan
    • Smart Structures and Systems
    • /
    • 제6권7호
    • /
    • pp.867-887
    • /
    • 2010
  • An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.