• Title/Summary/Keyword: unsteady CFD

Search Result 395, Processing Time 0.026 seconds

RESEARCH ON THE WAVELET METHOD FOR THE IMPROVEMENT OF COMPUTATIONAL EFFICIENCY OF TWO DIMENSIONAL FLOW PROBLEMS (2차원 비정상 유동 해석 효율 향상을 위한 Wavelet 기법 응용 연구)

  • Kang, H.M.;Hong, S.W.;Jeong, J.H.;Kim, K.H.;Lee, D.H.;Lee, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.42-49
    • /
    • 2008
  • A wavelet method is presented in order to improve the computational efficiency of two dimensional unsteady flow problems while maintaining the order of accuracy of conventional CFD schemes. First, by using the interpolating wavelet transformation including decomposition and thresholding, an adaptive dataset to a solution is constructed. Then, inviscid and viscous fluxes are calculated only at the points within an adaptive dataset, which enhances the computational efficiency. Second, thresholding step is modified to maintain the spatial and temporal accuracy of conventional CFD schemes automatically by selecting the threshold value between user-defined value and the magnitude of spatial or temporal truncation error. The wavelet method suggested in this study is successfully applied to various unsteady flow problems and it is shown that the computational efficiency is enhanced with maintaining the computational accuracy of CFD schemes.

  • PDF

RESEARCH ON THE WAVELET METHOD FOR THE IMPROVEMENT OF COMPUTATIONAL EFFICIENCY OF TWO DIMENSIONAL FLOW PROBLEMS (2차원 비정상 유동 해석 효율 향상을 위한 Wavelet 기법 응용 연구)

  • Kang, H.M.;Hong, S.W.;Jeong, J.H.;Kim, K.H.;Lee, D.H.;Lee, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.42-49
    • /
    • 2008
  • A wavelet method is presented in order to improve the computational efficiency of two dimensional unsteady flow problems while maintaining the order of accuracy of conventional CFD schemes. First, by using the interpolating wavelet transformation including decomposition and thresholding, an adaptive dataset to a solution is constructed. Then, inviscid and viscous fluxes are calculated only at the points within an adaptive dataset, which enhances the computational efficiency. Second, thresholding step is modified to maintain the spatial and temporal accuracy of conventional CFD schemes automatically by selecting the threshold value between user-defined value and the magnitude of spatial or temporal truncation error. The wavelet method suggested in this study is successfully applied to various unsteady flow problems and it is shown that the computational efficiency is enhanced with maintaining the computational accuracy of CFD schemes.

  • PDF

EXAMPLES OF REDUCED ORDER MODELLING FOR A 3D BACKWARD FACING STEP FLOW USING POD TECHNIQUE (POD를 사용한 3차원 후향계단 유동장 분석 예제)

  • Lee, K.S.;Lee, E.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.40-42
    • /
    • 2010
  • Unsteady CFD results of the backward facing step (BFS) flow field is reconstructed by the low-dimenstional modes using the POD (Proper Orthogonal Decomposition) technique. Flow responses to the blowing or suction with various frequencies and amplitudes applied at the edge of the BFS can also be analysed using the same technique. The present technique can be effectively applied to the feedback flow control device.

  • PDF

Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave (규칙파중 전진하는 선박의 유체역학적 응답에 대한 비정상 수치해석)

  • Park, Il-Ryong;Kim, Kwang-Soo;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • The present paper provides a CFD analysis of diffraction problem for a ship with forward speed using an unsteady RANS simulation method, a WAVIS code. The WAVIS viscous solver adopting a finite volume method has second order accuracy in time and field discretizaions for the RANS equations. A two phase level-set method and a realizable ${\kappa}-{\varepsilon}$ turbulence model are adopted to compute the free surface and to meet the turbulence closure, respectively. To validate the capability of the present numerical methods for the simulation of an unsteady progressive regular wave, computations are performed for three grid sets with refinement ratio of ${\sqrt{2}}$. The main simulation is performed for a DTMB5512 model with a forward speed in a regular head sea condition. Validation of the present numerical method is carried out by comparing the present CFD results with available unsteady experimental data published in the 2005 Tokyo CFD Workshop: resistance, heave force, pitch moment, unsteady free surface elevations and velocity fields.

CFD Analysis of Cavitation Phenomena in Mixed-Flow Pump

  • Sedlar, Milan;Sputa, Oldrich;Komarek, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.18-29
    • /
    • 2012
  • This paper deals with the CFD analysis of cavitating flow in the mixed-flow pump with the specific speed of 1.64 which suffers from a high level of noise and vibrations close to the optimal flow coefficient. The ANSYS CFX package has been used to solve URANS equations together with the Rayleigh-Plesset model and the SST-SAS turbulence model has been employed to capture highly unsteady phenomena inside the pump. The CFD analysis has provided a good picture of the cavitation structures inside the pump and their dynamics for a wide range of flow coefficients and NPSH values. Cavitation instabilities were detected at 70% of the optimal flow coefficient close to the NPSH3 value (NPSH3 is the net positive suction head required for the 3% drop of the total head of the pump).

A Study about Choice of Industrial Mixer's Impeller Type for PIV and CFD (PIV와 CFD에 의한 산업용 교반기 Impeller 형상 선정에 관한 연구)

  • Kim, Dong-Kyun;Kim, Jeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.797-803
    • /
    • 2007
  • The Industrial Mixers are used in various industrial fields where they are necessary to intimately mix two reactants in a short Period of time. However. despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics Induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types, Screw type and Rushton turbine type. In this study choice of the industrial mixer's impeller type using PIV and CFD method. The rotating speed of impellers are fixed by 100RPM.

Comparison of CFD simulations with experimental data for a tanker model advancing in waves

  • Orihara, Hideo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, CFD simulation results for a tanker model are compared with experimental data over a range of wave conditions to verify a capability to predict the sea-keeping performance of practical hull forms. CFD simulations are conducted using WISDAM-X code which is capable of unsteady RANS calculations in arbitrary wave conditions. Comparisons are made of unsteady surface pressures, added resistance and ship motions in regular waves for cases of fully-loaded and ballast conditions of a large tanker model. It is shown that the simulation results agree fairly well with the experimental data, and that WISDAM-X code can predict sea-keeping performance of practical hull forms.

CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre (CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측)

  • Kim, Sung-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

Numerical Evaluation of Dynamic Transfer Matrix and Unsteady Cavitation Characteristics of an Inducer

  • Yonezawa, Koichi;Aono, Jun;Kang, Donghyuk;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.126-133
    • /
    • 2012
  • The transfer matrix and unsteady cavitation characteristics, cavitation compliance and mass flow gain factor, of cavitating inducer were evaluated by CFD using commercial software. Quasi-steady values of cavitation compliance and mass flow gain factor were obtained first by using steady calculations at various flow rate and inlet cavitation number. Then unsteady calculations were made to determine the transfer matrix and the cavitation characteristics. The results are compared with experiments to show the validity of calculations.