• Title/Summary/Keyword: unstable plant

Search Result 176, Processing Time 0.025 seconds

Closed Loop System Identification of Steam Generator Using Neural Networks (신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명)

  • Park, Jong-Ho;Han, Hoo-Seuk;Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

Eigenstructure Assignment for Linear Systems with Probabilistic Uncertainties

  • Seo, Young-Bong;Park, Jae-Weon;Lee, Dal-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.933-945
    • /
    • 2004
  • In this paper, S (stochastic)-eigenvalue concept and its S-eigenvector for linear continuous-time systems with probabilistic uncertainties is proposed. The proposed concept is concerned with the perturbation of eigenvalues due to the probabilistic variable parameters in the dynamic model of a plant. S-eigenstructure assignment scheme via the Sylvester equation approach based on the S-eigenvalue concept is also proposed. The proposed design schemes are illustrated by numerical examples, and applied to the longitudinal dynamics of open-loop-unstable aircraft with possible uncertainties in aerodynamic and thrust effects as well as separate dynamic pressure. These results explicitly characterize how S-eigenvalues in the complex plane may impose stability on S-eigenstructure assignment.

A study on the design of a hovering flight controller for a model helicopter using time delay control (시간지연제어 기법을 이용한 모형헬리콥터의 정지비행제어기 설계)

  • 안현식;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.763-766
    • /
    • 1996
  • A model helicopter is an unstable, multi-input multi-output nonlinear system exposed to strong disturbances and its system parameters change continually. In this paper, Time Delay Control(TDC) is adopted for these reasons. TDC uses past observation of the system's response and the control input to directly modify the control action rather than adjusting the controller gains leading to a model independent robust controller. TDC can force the plant to follow an appropriate reference model, but the reference model cannot be chosen arbitrarily. In this paper the procedure of choosing a reference model and the performance of the controller are presented.

  • PDF

A Levitation Controller Design for a Magnetic Levitation System (자기부상 시스템의 부상제어기 설계)

  • 김종문;강도현;박민국;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.

A Robust Levitation Controller Design for Electromagnetic Levitation System

  • Kim, Choon-Kyung;Kim, Jong-Moon;Park, Min-Kook;Kwon, Soon-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.6-37
    • /
    • 2001
  • In this paper, a robust levitation controller for an attractive MAGLVE system is designed. The design of an H$\infty$ controller based on LMI method is proposed for the control of a simple magnetic levitation system. Attractive MAGLEV system is highly nonlinear and open-loop unstable, and has a very restricted equilibrium region, Also, this system has to tolerate various disturbances caused by propulsion. Thus a robust feedback controller is needed to control the system efficiently. We first formulate a mathematical model for the single magnet levitation system. Then we set up an H$\infty$ control problem as a mixed sensitivity problem where the augmented plant is constructed with frequency weighting function ...

  • PDF

A Controller Design for Teleoperated Systems with Signal Transmission Time Delay

  • Ahn, Sung-Ho;Jin, Jae-Hyun;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.116.1-116
    • /
    • 2002
  • When the teleoperated system has a signal transmission time delay between slave and control system , the system stability as well as the position tracking and the force reflecting performances are likely to be deteriorated. This paper proposed a bilateral control scheme and a controller design method for the teleoperated control systems with a signal transmission time delay. The proposed controller is a modified type of smith predictor for the time delay in each input and output stage of an open loop unstable plant. The proposed controller not only satisfies the system internal stability but also improves the position tracking performance with disturbance rejection capability. The simulation...

  • PDF

동적 마찰 모델을 이용한 마찰계의 제어에 관한 연구

  • 임상?;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.208.2-212
    • /
    • 1997
  • In a model based friction comensation for a frictional system,the performance of the system is inflenceed by the selection of the friction model. Especially, when a real plant have dynamic friction characteritics, the compensation of friction with a static friction model may deteriorate the perfomance. For the system we constlucted an adaptiv parameter estimation and friction compensation with a newly introduced dynamic friction model proposed by Canudas et.[1]. The model depicts varios frictional phenomena,such as Stibeck effect,frictional memory, Stick-slip motion. Parmeter identification algorithm are followed conventional RLSM adaptive rule. The stability for the closed system was proved by the Lyapunov stability. The result say that if a real system have dynamic friction property,the friction compensation with the dynamic friction model will improve the perfomance moreover static friction model based compensation may lead to the system unstable.

A Study on Modeling and Identification for the Magnetic Bearing System (자기 베어링 시스템의 모델링 및 동정에 관한 연구)

  • Shim, S.H.;Kim, C.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.44-52
    • /
    • 2001
  • This paper considers a modeling and identification for the MIMO magnetic bearing system. To obtain the nominal plant transfer functions, we have experimented on the frequency response by a closed-loop identification method because the system is unstable essentially. We suggest a method of curve-fitting for obtaining the transfer function from the frequency responses by using the system's modeling structure and two controllers which are different from each other. From the frequency response results, we found the effects of coupling by opposing controllers. And using this effects and the system's modeling structure, we could obtain the transfer functions of which have the same modularized denominators.

  • PDF

Design of Optimized Cascade Controller by Hierarchical Fair Competition-based Genetic Algorithms for Rotary Inverted Pendulum System (계층적 공정 경쟁 유전자 알고리즘을 이용한 회전형 역 진자 시스템의 최적 캐스케이드 제어기 설계)

  • Jung, Seung-Hyun;Jang, Han-Jong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.104-106
    • /
    • 2007
  • In this paper, we propose an approach to design of optimized Cascade controller for Rotary Inverted Pendulum system using Hierarchical Fair Competition-based Genetic Algorithm(HFCGA). GAs may get trapped in a sub-optimal region of the search space thus becoming unable to find better quality solutions, especially for very large search space. The Parallel Genetic Algorithms(PGA) are developed with the aid of global search and retard premature convergence. HFCGA is a kind of multi-populations of PGA. In this paper, we design optimized Cascade controller by HFCGA for Rotary Inverted Pendulum system that is nonlinear and unstable. Cascade controller comprise two feedback loop, parameters of controller optimize using HFCGA. Then designed controller evaluate by apply to the real plant.

  • PDF

The Implementation of a Rail-Vibration Controller of MagLev System (자기부상시스템의 레일진동제어기 구현)

  • Kim, Jong-Moon;Kim, Seog-Joo;Kim, Choon-Kyung;Park, Min-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2199-2202
    • /
    • 2002
  • In this paper, a rail-vibration controller of magnetic levitation system is designed and implemented. The target plant to be controlled is electro-magnetic type which is open-loop unstable, highly non-linear and time-varying system. The designed controller is validated by some kinds of experiments.

  • PDF