• Title/Summary/Keyword: unstable plant

Search Result 176, Processing Time 0.025 seconds

Insect community dynamics in relation to climate change in Mongolia

  • Iderzorig, Badamnyambuu;Lkhagvadorj, Khureltsetseg;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.111-118
    • /
    • 2016
  • In recent years, many research revealed plant-insect interactions are becoming unstable because of climate change, human activities and grazing effect. In this work, it is aimed to disclose that how climate of two different years is influencing on insect community at certain locality in Mongolia. The data on the insect community are collected, covering full flowering season from June to August in 2014 and 2015. In order to include all species of insects in Udleg Station, data was collected in three different sites. One of them was around edge of forest, another one was in ungrazed area or inside the fence that has been kept for more than 9 years and last one was in grazed area. Weather was a perceptible difference during two year's study. This climate differences significantly influenced on the insect community. In 2014, overall 305 insect species were recorded, in which 124 insect species in order of Diptera, 44 in Lepidoptera, 33 in Coleoptera, 31 in Hemiptera, and 73 in Hymenoptera were determined. But in 2015, these number of species noticeably decreased, and total 150 insect species were recorded, in which 58 in Diptera, 26 in Lepidoptera, 13 in Coleoptera, 12 in Hemiptera, and 41 in Hymenoptera were determined.

Seasonal Community Structure and Vertical Distribution of Medicinal Seaweeds at Kkotji in Taean Peninsula, Korea (태안반도 꽃지 약용해조의 계절적 군집구조 및 수직분포)

  • Lee, Ki-Hun;Yoo, Hyun-Il;Choi, Han-Gil
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.209-219
    • /
    • 2007
  • Marine algal flora and community structure of medicinal seaweeds were examined at Kkotji of Taean Peninsula, Korea from May 2005 to January 2006. Seventy-nine seaweeds including 42 medicinal algae and one marine plant were identified. Sargassum thunbergii was the representative alga occurred at all seasons and shore levels. The dominant medicinal seaweeds were perennial S. thunbergii, Neorhodomela aculeata, and Corallina pilulifera, and ephemeral Monostroma grevillei, Porphyra yezoensis, and Ulva pertusa. Their vertical distribution were N. aculeata – P. yezoensis, M. grevillei, and U. pertusa – C. pilulifera from high to low intertidal zone. The average biomass of medicinal seaweeds varied from 34.17 g m–2 in spring to 56.41 g m–2 in summer. At Kkotji shore, the opportunistic species (Enteromorpha, Ulva, and Cladophora) and turf-forming algae (Caulacanthus okamurae and Gelidium divaricatum) were easily observed. Such fast growing ESG II (ecological state group) was 87.50% and slow growing perennial algae, ESG I was only 12.15%. Also, diversity index (H’) and dominance index (DI) indicate that the seaweed community of Kkotji is unstable. Therefore, Kkotji rocky shore should be more protected from human activities such as turbulence and eutrophication in order to maintain species diversity and abundance of medicinal seaweeds.

Effect of Be Mixing Ratio on the Characteristics of TIG Welding with High Current and High Speed (대전류 고속 TIG 용접 특성에 미치는 He 혼합비의 영향)

  • Oh Dong-Soo;Kim Yeong-Sik;Cho Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.54-60
    • /
    • 2005
  • Tungsten Inert Gas(TIG) welding is today one of the most popular arc welding process because of its high quality welds and low equipment costs. Even if welding productivity increases with welding speed and current, this strategy is limited by the appearance of defects such as undercut and humping bead due to the depressed molten metal. The purpose of this study investigates the effect of He mixing ratio on the characteristics with high current and speed in TIG welding. The conclusions obtained permit to explain the arc start characteristics quantitatively and the maximum welding speed on stable bead formation with He mixing ratio for high current and speed TIG welding observed in experiments. Also through the relation of the maximum arc pressure and surface depression depth at high current and speed TIG welding, it made clear the mechanism of unstable bead formation.

Analysis of Process and Operating Characteristics for Chung Nam Province Sewage Treatment Plants (충청남도 하수처리시설의 공정 및 운영 특성 분석)

  • Oa, Seong Wook;Lee, Sang Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.553-559
    • /
    • 2009
  • Currently, small scale sewage works are getting increase in Chung Nam Province and it is strongly required for those plants to get the information of optimized procedures and technologies. Most processes for sewage works in Korea were designed for large scale plants, so many difficulties are observed in small scale sewage works. This study was conducted to evaluate the propriety of O&M and construction cost for sewage treatment plants in Chung Nam Province. The treatment results and process stability of 32 public sewage treatment plants were also investigated. It is expected to provide optimum O&M and construction cost for future small scale sewage works and improving projects of existing plants by these results. Pollution problems caused by small scale plants are usually restricted to small areas; however, in view of the high cost per unit population, treatment requirements and alternatives have to be studied carefully. In comparison to larger plants, more pronounced and different boundary conditions such as unstable influent load, per capita costs and a large variety of feasible treatment and disposal systems were considered.

An Optimal Approach to Rotational Vibration Suppression using Disturbance Observer in Disk Drive Systems

  • Park, Sung-Won;Kim, Nam-Guk;Chu, Sang-Hoon;Kang, Chang-Ik;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2007
  • This paper investigates the design of disturbance observer for rotational vibration suppression in disk drive systems. The design aims to provide an optimal controller which satisfies both vibration performance and robust stability. It consists of an inversion method, a special filter, and optimization scheme. Firstly a new inversion method is introduced, which provides more accurate inversion compared to conventional zero phase error method. The inversion is to deal with unstable zeros in the plant model. Secondly a special filter for disturbance selection is given, which features adjustable gain and band pass characteristics so that it enables flexible shaping of the loop considering the trade-off between performance and stability margins. And finally the parameters of disturbance observer are optimized in conjunction with external disturbance model. Simulation and experiment on commercial hard disk drives confirm that the design is very effective to such disturbance which is hard to be handled by conventional approach.

  • PDF

Meiobenthic Animals of the Tidal Flat Near the Yeonggwang Nuclear Power Plant (영광원전 주변 해역의 조간대 갯벌에 서식하는 중형저서생물)

  • Kim, Dong-Sung;Choi, Jin-Woo;Kang, Rae-Seon
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Meiobenthic community structure of tidal flats near the Yeonggwang Nuclear Power Plant have studied during summer (June) and fall (October) 1997. Examination of sediment samples collected along the transects showed that there were 18 different types of meiobenthos in the study area. The most abundant meiobenthic animals belonged to Phylum Nematoda in both seasons and all transects. However, sediment samples collected near discharge areas, transects A and B, showed relatively lower abundance than other general coastal areas. Another abundant meiobenthic organism is benthic Harpacticoids which is very sensitive to any environmental changes. Polycheats and Ostracods were next abundant meiobenthos which also showed the difference between the study area and other general coastal areas. Only transect C maintained similar meiobenthic abundance and diversity to other coastal areas. Horizontal distribution for transects A and B showed higher densities in upper and mid tidal flat zones. On the other hand, transect C which is located furtherest from the discharges showed an increasing trend in abundance from upper to lower areas. For size distribution analyses showed that animals which fit into the meshsize of 0.125 mm were abundant, Vertical distribution of meiobenthic animals within the sediments for both sampling seasons showed the highest individual numbers in the surface sediment layers of 0-1 cm depth and showed a decreasing trend as sediment gets deeper. Each class of meiobenthos had different vertical profiles. When comparing survey transects A and B with other similar tidal flat areas, this sites seems to a very unstable environment of tidal flats near the Yeonggwang Nuclear Power Plant.

  • PDF

A Study of the Geomorphological Process and Vegetation Distribution of Sand-bars on the Tan-cheon River (탄천 하도사주의 지형 형성과정과 식생분포 연구)

  • Choi, Mi-Kyoung;Lee, Sam-Hee;Choi, Jung-Kwon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.6
    • /
    • pp.96-105
    • /
    • 2010
  • This study identified the dynamic process of sandbar and vegetation distribution of the sandbar on the Tan-cheon River. The study area is located in the lower reaches of the Tan-cheon River that has been managed as an Ecosystem Reserve Area since 2002. For the study, the geomorphological process was analyzed through mapping analysis using a satellite image followed by analysis of the vegetation distribution through an on-site survey. The major findings were as follows : First, In the fluvial geomorphic process, various kinds of sandbars were developed in 1990s, the morphologic characteristics changing continuously. Second, In the distribution of vegetation on the sandbar, the sandbar shore was covered with bare sand substrate or intermittent annual vegetation because of the periodic fluctuation of the water-level due to intensive disturbances. Third, In the relationship between the sandbar formation and vegetation, four types of sandbars were classified: channel-shore stable bar, channel-shore unstable bar, mid-channel stable bar and mid-channel unstable bar, according to the fluvial disturbance & vegetation process. The study verifies that the vegetation distribution is reciprocally related to the geomorphological process. Accordingly, it is meaningful in the selection of plant species and the planting area of the sand bar. However, it is limited to the planting guidelines on river restoration projects. More diverse on-site experimental studies should be conducted.

The Evaluation on the exiting greens of Hwasan Country Club by undisturbed Soil Core Analysis (토양 코아 분석을 통한 화산 골프장의 조성된 그린에 대한 평가)

  • 이상재;허근영;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • The subsurface environment of the root zone area can set the stae for "do or die" of the turfgrass plant. The good condition of the greens is verified by their physical properties. Therefore, this study was carried to evaluate on the existing green of Hwasan C.C. by undisturbed soil Core Anaysis. We completed the ISTRC SYSTEM BenchMarking of the undisturbed core samples taken from Green #1, Green #5, Green #9-"Best" area, and Green #9-"Stressed" area for the Hwasan C.C.. It was also our understanding that the greens were in "good" to "very good" conditioni. THe exception might be Green #9-"Stress" area, which was the stressed area. The stressed area was confined to a ridge across Green #9. The organic content test results comfirmed the development of organic layering in depth 0-2.5cm. For the amount of compaction in the upper root zones and te development of the green's respective organic layers, the infiltration rates were high in Green #1, Green #5, and Green #9 "Stressed" area. The depicted aerificaton hole might be the probable cause of the relatively high infiltraton rate. Green #9-"Best" area had a tested infiltration rate of 18.75cm/hr. Either this area had not been aerified, or the undisturbed sample did not contain a aerification cavity. The water retention capacity of the undisturbed samples was good. When the greens were first constructed, the original root zone mix had been relatively low water retention properties. And the bulk density and the porosity of the undisturbed samples were good. In the result, all the greens were similar except for the infiltration. Thus, we supposed that Green #9-"Stressed" area might be ainly influenced by the amount of irrigation water and the configuration of the green's surface. There had been a reduction in the amount of irrigation water as the water retention capacity in the greens was promoted. Especially, it had gradually become more of a problem as the green had matured in Green #9-"Stressed" area. Because Green #9-"Stressed" area was a ridge area. The reduction in the amount of irrigation water might be the probable cause of the stress in Green #9-"Stressed" area. Our final observation related to the soil texture and the particle size distribution of the sand. Though and sand contant of all the tested greens were good, the gravel content of them exceeded ISTRC Guidelines. In particle size distribution of the sand, the very coarse and the coarse content of all the tested greens exceeded, but the rest was insufficient. The stability is a function of the material retained on the 0.25mm mesh screen. But, the content of all the tested greens was very insufficient. Though all the greens was serviceable, the coarse root zone sands, such as the sand in the tested greens, tended to be "unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.;unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.ines.

  • PDF

A Numerical Study for the Air Flow on Complex Terrain (복잡지형의 공기흐름에 대한 수치해석 연구)

  • Park, Mi Sun;Jeong, Hae Sun;Jeong, Hyo Joon;Hwang, Won Tae;Kim, Eun Han;Han, Moon Hee;Kim, Hey Suk
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • The interpretation on the diffusion of radiation contaminants in air is usually to apply a Gaussian plume equation that obtains normal distributions in stable air flow conditions to draw a conservative conclusion. In this study, a numerical study using computational fluid dynamics methods was performed to interpret the air flow pattern and the diffusion of the radiation contaminants at the Wolseong nuclear power plants, and a more detailed solution can be obtained than the Gaussian plume equation, which is difficult to use to simulate complex terrains. The results show that a significant fluctuation of air flow in the terrain appears in the case of a northwester and southeaster because of the mountain located in the northwest and the sea located in the south-east. The northwesterly air flow shows the most unstable flow in the vertical direction when it passes over the terrain of mountain. The stable southeasterly air flow enters into the nuclear power plant from the sea, but it becomes unstable rapidly because of the interference by the building and the terrain. On the other hand, in the case of a northeaster and southwester, a small interruption of air flow is caused by the terrain and wake behind the buildings of nuclear power plants.

Analysis of Impact on the Circulating Water System due to an Installation of Helical Current Turbine at the Discharge Channel of the Power Plant (헬리컬 조류수차 설치로 인한 발전소 배수로 계통 영향 분석)

  • Kim, Ji-Young;Kang, Keum-Seok;Ryu, Moo-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.67-72
    • /
    • 2010
  • In this study, the impact on the circulating water system has been analyzed due to an installation of helical turbine to develop hydro-kinetic energy at the discharge channel of the power plant. Numerical simulations of velocity and pressure variations have been performed when one set of $3.6\;m\;{\times}\;1.5\;m$ sized helical turbine is installed at the outlet of discharge culvert. In case of mean sea level, change of downstream water surface elevation does not affect upstream elevation of the weir because its propagation is blocked by the seal well weir. However in case of highest high water level, change of downstream elevation affects upstream elevation because flow pattern in discharge culvert becomes the full pipe flow with submerged weir. Although an unstable pressure change occurs in upstream of the weir during the intial 10 minutes after beginning of the discharge, it becomes stable after that time. In addition, a rise of water surface elevation by 0.2 m is observed but it is concluded that it hardly affects the safety of circulating water pump (CWP) although its required power is increased more or less. Therefore, the increase of required power of CWP needs to be considered for evaluation of the helical turbine applicability.