• Title/Summary/Keyword: unseating

Search Result 24, Processing Time 0.025 seconds

Analysis of Unseating Failure of Various Types of Bridge Spans under Seismic Excitations (지진발생시 교량형식에 따른 낙교위험도 분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.123-130
    • /
    • 1998
  • The probability of unseating failure of the bridge spans under earthquakes is investigated. Seismic excitations are simulated as nonstationary processes by combining a stationary process and an intensity function. For computational convenience, a simplified single-degree-of-freedom model is adopted, which retains the dynamic characteristics of the original brige motion in concern. The time history analysis for the developed single degree-of-freedom model are carried out to evaluate the response processes, and the probabilistic characteristics of response displacements are evaluated. The reliability analysis of the bridge against the unseating failure is performed with the statistical information of the maximum displacements of responses.

  • PDF

Seismic fragility analysis of bridge response due to spatially varying ground motions

  • Kun, C.;Li, B.;Chouw, N.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.297-316
    • /
    • 2015
  • The use of fragility curves in the design of bridges is becoming common these days. In this study, experimental data have been used to develop fragility curves for the potential of girder unseating of a three-segment bridge and a bridge-abutment system including the influence of spatially varying ground motions, pounding, and abutment movement. The ground excitations were simulated based on the design spectra for different soil conditions. The Newmarket Viaduct replacement bridge in Auckland was used as the prototype bridge. These fragility curves were also applied to the 2010 Darfield and 2011 Christchurch earthquakes. The study showed that for bridges with similar characteristics as the chosen prototype and with similar fundamental frequencies, pounding could increase the probability of girder unseating by up to 35% and 30% based on the AASHTO and NZTA seating length requirements, respectively. The assumption of uniform ground excitations in many design practices, such as the NZTA requirements, could potentially be disastrous as girders might have a very good chance of unseating (as much as 53% higher chances when considering spatial variation of ground motions) even when they are designed not to. In the case of superstructures with dissimilar frequencies, the assumption of fixed abutments could significantly overestimate the girder unseating potential when pounding was ignored and underestimate the chances when pounding was considered. Bridges subjected to spatially varying ground excitations simulated based on the New Zealand design spectra for soft soil conditions with weak correlation shows the highest chances of girders falling off, of up to 65% greater than for shallow soil excitations.

Seismic Performance of the Anchor System of Bearing-protection Devices Preventing the Unseating Failure of Bridges (낙교 방지를 위한 받침보호장치의 앵커부 내진성능)

  • Jeong, Hyeok-Chang;Kim, Min-Su;Park, Kwang-Soon;Ju, Hyeong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.45-53
    • /
    • 2010
  • The unseating failure of bridges, which is one of the most severe types of damage leading to the loss of transportation function, should be avoided in earthquakes. As a measure of prevention of unseating failure resulting from the failure of bearings, bearing-protection devices are frequently used. They are installed beside the bearings and protect the bearings by resisting a seismic load transmitted from the superstructure. In order to show appropriate seismic performance, the strength of anchors as well as of device bodies should be confirmed. In Korea, they have been installed only according to the design provided by device agents, because a proper design method for the anchors has not been established. In this study the performance of bearing-protection devices with various heights of concrete bed blocks has been investigated experimentally, and a proper design method has been proposed to secure seismic performance.

Effects of Bearing Damage on Bridge Seismic Responses (교량시스템의 지진응답특성에 미치는 받침손상의 영향)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.287-294
    • /
    • 2001
  • Dynamic responses of multi-span simply supported bridges are investigated to examine the effect of damaged bearings under seismic excitations. The damaged bearings are modeled as sliding elements with friction between the super-structure and the pier top. Various values of the friction coefficients for damaged bearings are examined with increasing magnitudes of peak ground accelerations. It is found that the g1oba1 seismic behaviors are significantly influenced by the occurrence of bearing damage. It should be noticed that the most possible location of unseating failure of superstructures differs with that in the model without consideration of the bearing damage. It can be concluded that the bearing damage may play the major role in the unseating failure of a bridge system, so that the damage of bearings should be included to achieve more rational seismic safety evaluation.

  • PDF

Unseating Failure of Bridge Spans with Nonlnear Pier Motion under Seismic Excitations (교각 비선형 거동을 고려한 낙교위험분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.128-135
    • /
    • 1998
  • In this study, the unseating failure of the bridge spans under seismic excitations is examined by investigation the nonlinear response behaviors of the bridge system with reinforced concrete piers. To reduce the computational effort and to consider the effect of the foundation motions, a simplified 3 degree-of-freedom model is proposed, which retains the dynamic characteristics of the original bridge motions in concern. To imply the nonlinear behaviors of the RC piers to the system. a hysteresis model is utilized from the calculated force-deformation curve for the piers. The statistical characteristics of the maximum response displacements are obtained from the simulation results of 1000 time history analysis.

  • PDF

Dynamic Characterisics of the Bridge Retrofitted by Restrainer under Seismic Excitations Considering Pounding Effects (충돌효과를 고려한 Restrainer로 보강된 교량의 지진하중에 대한 거동특성분석)

  • 김상효;마호성;이상우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1999
  • An analysis model is developed to evaluate the dynamic responses of a bridge system under seismic excitations, in which pounding actions between girders are considered in addition to other phenomena such as nonlinear pier motion, rotational and translational motions of foundations. The model also considers the abutment and restrainers connecting adjacent girders to prevent the unseating failures. Using the developed model, the longitudinal dynamic behaviors of a bridge system are examined for various peak ground accelerations, and the effects of the applied restrainers are investigated. It is found that the restrainers reduce the relative displacement with the shorter clearance length as well as the higher stiffness of the restrainers for moderate excitations. However, in the region with strong excitations the restrainers may yield due to the large relative displacement. Therefore, the extension of support length in addition to restrainers may need to prevent the unseating failure more effectively.

  • PDF

Effects of Bearing Damage upon Seismic Behaviors of Multi-Span Simply Supported Bridges (다경간 단순형 교량구조물의 지진거동에 미치는 받침손상의 영향)

  • 김상효;마호성;조병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.19-27
    • /
    • 2002
  • Dynamic responses of a multi-span simply supported bridge are investigated to examine the effect of bearing damage under seismic excitations. The damaged bearings are modeled as sliding elements with friction between the superstructure and the top of the pier. Various values of the friction coefficients are examined to figure out the effect of damaged bearings with various levels of peak ground accelerations. It is found that the global seismic behaviors are significantly influenced by the occurrence of bearing damage. It should be noticed that the most possible location of unseating failure of superstructures differs from that in the bridge model without considering the bearing damage. It can be concluded that the bearing damage may play the major role in the unseating failure of a bridge system, so that the damage of bearings should be included to achieve more rational seismic safety evaluation.

Nonlinear Seismic Behavior Analysis of Skewed Bridges Considering Pounding Between Deck and Abutment (상판과 교대의 충돌을 고려한 사교의 비선형 지진거동 해석)

  • Kang, Seung Woo;Choi, Kwang Kyu;Song, Si Young;Son, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.301-310
    • /
    • 2016
  • There are differences in seismic behavior between non-skewed bridges and skewed bridges due to in-plane rotations caused by pounding between the skewed deck and its abutments during strong earthquake. Many advances have been made in developing design codes and guidelines for dynamic analyses of non-skewed bridges. However, there remain significant uncertainties with regard to the structural response of skewed bridges caused by unusual seismic response characteristics. The purpose of this study is performing non-linear time history analysis of the bridges using abutment-soil interaction model considering pounding between the skewed deck and its abutments, and analyzing global seismic behavior characteristics of the skewed bridges to assess the possibility of unseating. Refined bridge model with abutment back fill, shear key and elastomeric bearing was developed using non-linear spring element. In order to evaluate the amplification of longitudinal and transverse displacement response, non-linear time history analysis was performed for single span bridges. Far-fault and near-fault ground motions were used as input ground motions. According to each parameter, seismic behavior of skewed bridges was evaluated.

Dynamic behaviors of the bridge considering pounding and friction effects under seismic excitations

  • Kim, Sang-Hyo;Lee, Sang-Woo;Mha, Ho-Seong
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.621-633
    • /
    • 2000
  • Dynamic responses of a bridge system with several simple spans under longitudinal seismic excitations are examined. The bridge system is modeled as the multiple oscillators and each oscillator consists of four degrees-of-freedom system to implement the poundings between the adjacent oscillators and the friction at movable supports. Pounding effects are considered by introducing the impact elements and a bi-linear model is adopted for the friction force. From the parametric studies, the pounding is found to induce complicated seismic responses and to restrain significantly the relative displacements between the adjacent units. The smaller gap size also restricts more strictly the relative displacement. It is found that the relative displacements between the abutment and adjacent pier unit became much larger than the responses between the inner pier units. Consequently, the unseating failure could take a place between the abutment and nearby pier units. It is also found that the relative displacements of an abutment unit to the adjacent pier unit are governed by the pounding at the opposite side abutment.

Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges (다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교)

  • Choi, Eun Soo;Kim, Lee Hyeon;Park, Joo Nam;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.587-597
    • /
    • 2007
  • Steel restrainer cables for multiple frame bridges in California in the United States have been shown to be effective in preventing unseating at internal hinges during the past several earthquakes. Consequently, the steel-cable-restrainer is being tested for applications on multiple-span-simply-supported (MSSS) bridges in the mid-American region. In addition, shape memory alloy (SMA) bars in tension are being studied for the same application, multiple frame bridges, the developed seismic forces are transferred to piers through the restrainers. However, in MSSS bridges, the seismic forces are transferred to abutments by the restrainers. Therefore, the abutment' behavior should also be investigated. In this study, we assessed the seismic performance of the three types of restrainers, such as steel restrainer cables, SMA in tension, and SMA in bending for an MSSS bridge from moderate to strong ground motion, bending test of an SMA bar was conducted and its analytical model was determined for this study. Nonlinear time history analyses were conducted to assess the seismic responses of the as-built and the retrofitted bridges. All three types of restrainers reduced the hinge opening and the SMA in tension was the most effective of the three devices in preventing the unseating, all restrainers produced damage on the abutment from the pulling action of the MSSS bridge due to strong ground motions, was found that the retrofit of the abutment in the pulling action is required in the installation of restrainers in MSSS bridges.