• Title/Summary/Keyword: unsaturated soil properties

Search Result 101, Processing Time 0.029 seconds

A Simple Approach of Estimating the Shear Strength Parameters for Unsaturated Soil-Aggregate Systems (불포화 지반재료의 전단강도정수 추정을 위한 간편법)

  • Park, Seong-Wan;Kim, Yong-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.75-82
    • /
    • 2003
  • This paper presents the results of a study that was performed to evaluate fronds of shear strength parameters in stabilization of unbound soil-aggregate systems based on the theory of unsaturated soil mechanics. Two important shear strength parameters, effective cohesion and effective angle of internal friction were estimated by the proposed approach using the results from suction measurements and unconfined compressive strength test. In addition, the effect of different addition rates of stabilizing agent was compared. Due to the stabilization process, an increase in suction potential on engineering properties of geomaterials was observed by using dielectric constant measurements. In conclusion, the results from this study show that the proposed approach can be simply used for predicting shear strength parameters of the stabilized geomaterials.

Effect of water content on near-pile silt deformation during pile driving using PIV technology

  • Jiang, Tong;Wang, Lijin;Zhang, Junran;Jia, Hang;Pan, Jishun
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-149
    • /
    • 2020
  • Piles are widely used in structural foundations of engineering projects. However, the deformation of the soil around the pile caused by driving process has an adverse effect on adjacent existing underground buildings. Many previous studies have addressed related problems in sand and saturated clay. Nevertheless, the failure mechanism of pile driving in unsaturated soil remains scarcely reported, and this issue needs to be studied. In this study, a modeling test system based on particle image velocimetry (PIV) was developed for studying deformation characteristics of pile driving in unsaturated silt with different water contents. Meanwhile, a series of direct shear tests and soil-water characteristic curve (SWCC) tests also were conducted. The test results show that the displacement field shows an apparent squeezing effect under the pile end. The installation pressure and displacement field characteristics are sensitive to the water content. The installation pressure is the largest and the total displacement field is the smallest, for specimens compacted at water content of 11.5%. These observations can be reasonably interpreted according to the relevant unsaturated silt theory derived from SWCC tests and direct shear tests. The variation characteristics of the soil displacement field reflect the macroscopic mechanical properties of the soil around the pile.

Study on Engineering Properties of Earth Materials (흙의 공학적 성질에 관한 연구)

  • 김주범;윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3815-3832
    • /
    • 1975
  • This study was made to investigate various engineering properties of earth materials resulting from their changes in density and moisture content. The results obtained in this study are summarized as follows: 1. The finner the grain size is, the bigger the Optimum Moisture Content(OMC) is, showing a linear relationship between percent passing of NO. 200 Sieve (n) and OMC(Wo) which can be represented by the equation Wo=0.186n+8.3 2. There is a linear relationship of inverse proportion between OMC and Maximum Dry Density (MDD) which can be represented by the equation ${\gamma}$d=2.167-0.026Wo 3. There is an exponential curve relationship between void ratio (es) and MDD whose equation can be expressed ${\gamma}$d=2.67e-0.4550.9), indicating that as MDD increases, void ratio decreases. 4. The coefficent of permeability increases in proportion to decrease of the MDD and this increase trend is more obvious in coarse material than in fine material, and more obvious in cohesionless soil than in cohesive soil. 5. Even in the same density, the coefficient of permeability is smaller in wet than in dry from the Optimum Moisture Content. 6. Showing that unconfined compressive strength increases in proportion to dry density increase, in unsaturated state the compacted in dry has bigger strength value than the compacted in wet. On the other hand, in saturated state, the compacted in dry has a trend to be smaller than the compacted in wet. 7. Even in the same density, unconfined compressive strength increases in proportion to cohesion, however, when in small density and in saturated state, this relationship are rejected. 8. In unsaturated state, cohesion force is bigger in dry than in wet from OMC. In saturated state, on the other hand, it is directly praportional to density. 9. Cohesion force decreases in proportion to compaction rate decrease. And this trend is more evident in coarse matorial than in fine material. 10. Internal friction angle of soil is not influenced evidently on the changes of moisture content and compaction rate in unsaturated state, On the other hand in saturated state it is influenced density. 11. Cohesion force is directly proportional to unconfined compressive strength(qu), indicating that it has approximately 35 percent of qu in unsaturated state and approximately 70 percent of qu in saturated state.

  • PDF

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

Dynamic Behavior of Unsaturated Decomposed Mudstone Soil (불포화 이암풍화토의 동적거동)

  • 배중선;이주상;김주철;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.541-548
    • /
    • 2001
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it Is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils ulder low and high strain amplitude, For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum degree of saturation under low and strain amplitude is 32 ∼ 37% which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

  • PDF

Impacts of Rainfall Events and Distribution on Unsaturated Soil Slope Analysis (불포화 토사사면 해석에 대한 강우사상과 분포의 영향)

  • Kim, Jae-Hong;Kim, Ho-Kyum;Kim, Byeongsu;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • The time distribution of rainfall is one of the most important considerations for evaluating soil slope stability. In order to study the rainfall-induced slope failure, the rainfall pattern has generally been assumed as uniform rainfall intensity for rainfall duration. However, it should be noted that the time distribution of the design rainfall method has a significant effect on the soil slope instability. The study implemented Mononobe, Huff, and uniform method as three types of time distribution method of the design rainfall to estimate the factor of safety of soil slopes by rainfall duration. As a result, the difference of soil suction and unsaturated hydraulic properties in a soil by rainfall pattern was found through the application of an appropriate time distribution method to numerical simulation for rainfall-induced slope stability.

Overview of Rosetta for Estimation of Soil Hydraulic Parameters using Support Vector Machines (보조벡터기로를 사용한 토양수리계수 추정을 위한 로제타 개관)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.8-13
    • /
    • 2009
  • Mathematical models have become increasingly popular in both research and management problems involving flow and transport processes in the subsurface. Rosetta is a program to estimate unsaturated hydraulic properties from surrogate soil data such as soil texture data and bulk density. Models of this type are called pedotransfer functions (PTFs) as an alternative measurements since they translate basic soil data into hydraulic properties. These functions may be either measured directly or estimated indirectly through prediction from more easily measured data based using quasi-empirical models.

Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration

  • Qi, Shunchao;Vanapalli, Sai K.;Yang, Xing-guo;Zhou, Jia-wen;Lu, Gong-da
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Shallow failures occur frequently in both engineered and natural slopes in expansive soils. Rainfall infiltration is the most predominant triggering factor that contributes to slope failures in both expansive soils and clayey soils. However, slope failures in expansive soils have some distinct characteristics in comparison to slopes in conventional clayey soils. They typically undergo shallow failures with gentle sliding retrogression characteristics. The shallow sliding mass near the slope surface is typically in a state of unsaturated condition and will exhibit significant volume changes with increasing water content during rainfall periods. Many other properties or characteristics change such as the shear strength, matric suction including stress distribution change with respect to depth and time. All these parameters have a significant contribution to the expansive soil slopes instability and are difficult to take into consideration in slope stability analysis using traditional slope stability analysis methods based on principles of saturated soil mechanics. In this paper, commercial software VADOSE/W that can account for climatic factors is used to predict variation of matric suction with respect to time for an expansive soil cut slope in China, which is reported in the literature. The variation of factor of safety with respect to time for this slope is computed using SLOPE/W by taking account of shear strength reduction associated with loss of matric suction extending state-of-the art understanding of the mechanics of unsaturated soils.

A Study on Unsaturated Permeable Properties of the Soil-Bentonite Mixtures (Soil-Bentonite 혼합토의 불포화 투수특성 연구)

  • Kim Man-il
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.123-132
    • /
    • 2005
  • This study presents the results of a laboratory investigation performed to study physical properties of soil-bentonite mixtures through the vertical permeation test and dielectric measurement test using Frequency Domain Reflectometry system for the liner of waste landfill. For the laboratory experiments, geotechnical testing was conducted on pre-mixed soil-bentonite which is consisted of standard sand, weathered granite soil and bentonite for estimating physical parameters such as a volumetric water content, void ratio and dielectric constant. In experiment results, initial soil-bentonite mixing rate has an effect of change of volumetric water content. Also change of volumetric water content of a soil-bentonite mixture is clearly detected to measure a response of dielectric constant. In order to estimate an unsaturated permeable property of soil-bentonite mixtures, equations between volumetric water content and dielectric constant were derived from this study.

Soil-Water Characteristics and Hysteretic Behaviors on Unsaturated Pavement Subgrades in Test Roads (시험도로 노상토의 불포화 함수특성 및 이력현상)

  • Park Seong-Wan;Shin Gil-Ho;Kim Byeong-Soo
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.95-104
    • /
    • 2006
  • Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. This study focuses on hysteresis observed in a compacted weathered granite subgrade soils based on the pressure plate laboratory tests. It was found that the Soil-Water Characteristics Curve of a soil is hysteretic and unique. The results also show that the wetting and drying curves predicted using the Fredlund and Xing model is quite close to the laboratory-measured results. For a specific matric suction, water content or coefficient of permeability on a wetting curve is always lower than those found on a drying curve.

  • PDF