• Title/Summary/Keyword: unsaturated soil properties

Search Result 102, Processing Time 0.024 seconds

Estimating Hydraulic Properties of Soil from Constriction-pore Size Distribution (수축공극크기분포를 이용한 지반의 수리학적 물성치 산정)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.27-34
    • /
    • 2022
  • Since water flow in the ground depends on the pore structure composed of soil grains, equations to predict the hydraulic properties based on the grain size have low accuracy. This paper presents a methodology to compute constriction-pore size distribution by Silveria's method and estimate saturated and unsaturated hydraulic properties of soils. Well-graded soil shows a uni-modal pore size distribution, and poor-graded soil does a bimodal distribution. Among theoretical models for saturated hydraulic conductivity using pore size distribution, Marshall model is well-matched with experimental results. Model formulas for soil-water characteristic curves and unsaturated hydraulic conductivity using the pore size distribution are proposed for hydraulic analysis of unsaturated soil. Continuous research is needed to select a model suitable to estimate hydraulic properties by applying the developed model formulas to various soils.

Stochastic Seepage Analysis of Dam (확률론적 댐 침투거동 해석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.73-83
    • /
    • 2006
  • Seepage analysis through unsaturated zone based on the theory of unsaturated flow is commonly performed to evaluate dam safety. However, the concepts of unsaturated soil behavior have not been transferred into the hands of practicing geotechnical engineers since the problems involving unsaturated soils often have the appearances of being extremely complex. There is variability and uncertainty associated with the unsaturated hydraulic properties that in turn will lead to variability in predicting unsaturated soil behavior such as seepage rate and the pore water pressure distribution. In this paper, measurements of the soil-water characteristic curve and saturated hydraulic conductivity for the core material of dam were conducted. Then, finite element stochastic analysis was used to capture the effect of unsaturated hydraulic properties on the seepage behavior of dam. It is observed that the amount of seepage increases, as the values of unsaturated soil parameters a and n increase. The values of m and p showed opposite trend.

An Experimental Study of Measuring Unsaturated Hydraulic Parameters on Joomoonjin Sand (주문진 표준사의 불포화 침투특성 측정에 관한 실험적 연구)

  • Jeong, Doo Young;Song, Kyung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.261-273
    • /
    • 1993
  • In order to study hydraulic properties and mechanical properties on unsaturated region, soil-water retention curve was obtained for suction plate method and pressure plate method, respectively. To investigate permeability of unsaturated soil and soil-water retention curve at the same time, unsaturated permeability tests using an improved Richard's method were performed on Joomoonjin Sand. These experimental results were compared with those by empirical equations. The relationship between air entry value and saturated permeability of filter was obtained for selecting a proper filter in unsaturated soil tests.

  • PDF

A Study on Change of Soil-Water Retention Curve with Different Net Confining Pressures and Porosities using a Suction-Saturation Control Technique (흡입력-포화도 조절 기법을 이용한 불포화토의 함수특성곡선에 미치는 간극비 및 순구속압력의 영향 연구)

  • Lee, Joon-Yong;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.93-103
    • /
    • 2012
  • A suction-saturation control technique based on flow pump system was developed to investigate hydraulic properties in unsaturated soils. The flow pump system is designed based on the principle of the axis-translation technique and triaxial equipment, and gives the suction-time and suction-saturation curves, the primary relationship needed for interpreting the response of unsaturated soils and link between theory and the material properties in unsaturated soil mechanics. Using the suction-saturation control technique, suction-time relationship and soil-water retention curve (SWRC) during hydraulic hysteresis were investigated with different net confining pressures and porosities. Three types of soils-two sands and a silt were used in this paper. This paper showed the effect of the hysteresis on the SWRC due to different net confining pressures and porosities. This means that a careful decision must be made as to which condition is to be modeled, since the delicate difference of the conditions in physical modeling can cause the different experimental output.

Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils (불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향)

  • Kim, Sangrae;Ki, Jaehong;Kim, Youngjin;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

Characteristics of Soil-Water Characteristic Curve and Unsaturated Permeability of Sludge Mixture (정수슬러지 혼합토의 함수특성곡선과 불포화 투수 특성)

  • Lim, Byung-Gwon;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.57-64
    • /
    • 2013
  • In this paper, in order to solve high water content of water sludge and promote its recycle, sludge mixtures with various mixing ratios were produced. Sludge mixture consisted of water sludge and weathered granite soil. Their physical properties and unsaturated characteristics (soil-water characteristic curve, and unsaturated permeability function) were investigated by laboratory tests. Experimental test results indicated that at a given matric suction volumetric water content of sludge mixture increased as water sludge content increased. Air entry values of sludge mixture increased from 0.9 kPa to 2.4 kPa with an increase in water sludge content or fine content. In addition, unsaturated permeability function, which is an important factor for performing infiltration analysis, was predicted using saturated permeability and soil-water characteristic curve of sludge mixture.

Change of Slope Stability due to Slope Inclination and Surface Conditions (사면경사와 표면 조건에 따른 사면안정성 해석)

  • Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • Slope stability is affected by duration of precipitation, probable rainfall intensity, unsaturated soil property, and soil strength. The recent analyses of slope stability tend to include unsaturated analysis based on infiltration properties of soil, while researches of unsaturated soil slope tend to include the analysis of deformation and stress distribution of soil over time. However, infiltration property of unsaturated soil slope depends not only on intensity or duration of precipitation, but also on relief and surface condition, which is not considered in status quo. This research uses hydrologic model parameters of soil in order to consider effects of inclination on filtration, and carries out analysis of unsaturated soil slope to confirm the effects according to slope inclination and surface condition. In conclusion, using slope stability analysis, the need to consider infiltration rate according to inclination and surface condition was confirmed even under the same precipitation conditions.

Evaluating Unsaturated Hydraulic Properties of Compacted Geomaterials in Road Foundations (I) : Laboratory Test (다져진 도로기초 재료의 불포화투수특성 평가 (I) : 실내실험)

  • Park, Seong-Wan;Sung, Yeol-Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.73-82
    • /
    • 2011
  • Generally, an unsaturated condition was not considered to predict the long-term strength and drainage behaviors on compacted road foundations. However, it is logical way to consider the unsaturated condition and hysteresis behavior on road foundations like subbase and subgrade. For more quantitative analysis, rational experimental approach requires proper laboratory tool and material model, and hydraulic properties of pavement geomaterials under unsaturated conditions. In this study, therefore, laboratory data from the soil-water characteristic curve tests were used to predict suction and unsaturated permeability on pavement foundations and the results were analyzed based on the nonlinear fitting model considered. In addition to that, the unsaturated moisture capacity of each material is discussed.

Slope Stability Analysis by Optimization Technique Considering Unsaturated Characteristics of Weathered Granite Soil (화강풍화토 지반의 불포화 특성을 고려한 최적화기법에 의한 사면안정해석 방법)

  • 이승래;이성진;변위용;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.123-133
    • /
    • 2001
  • Since most of soil slopes are in an unsaturated state, it is necessary to consider the unsaturated characteristics of soil slopes, in order to obtain more reasonable results. Therefore in this study we supplemented a slope stability analysis program to consider them, based on the concept of limit equilibrium. We also applied an optimization technique to search for a failure surface. Besides, we carried out experiments to obtain the unsaturated soil properties required in the analysis with weathered granite soils. We formulated a nonlinear apparent cohesion relationship with the matrix suction to be able to apply the unsaturated shear strength characteristics to the stability analysis. In addition, we intended to obtain more accurate soil water characteristic curves(SWCC) by measuring the change in volume of the specimen in the SWCC tests. As a result, we could appropriately assess the change of the safety factor according to the rainfall intensity and duration, by considering the variation of suction, permeability, and shear strength caused by the infiltration of rainfall into slopes.

  • PDF

Unsaturated Soil Properties of Compacted Soil at Sub-Zero Temperature (영하온도에서 다짐된 지반의 불포화 특성)

  • Lee, Jeonghyeop;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.5-13
    • /
    • 2018
  • Recently, construction disasters in thawing season are increasing due to the ground collapse and it is related to the improper compaction during winter season. Compaction at sub-zero temperature reduces the compaction effect and the research of mechanical properties of thawed soil after winter compaction can be used as useful data to understand the behavior of the ground in the thawing season. On the other hand, the research interest in the unsaturated soil mechanics has been increasing in the field of the geotechnical engineering. Therefore, it is expected that the research of unsaturated characteristics under the compaction of sub-zero temperature and freezing & thawing condition provides information to the researchers in the related fields. Therefore, in this research, unsaturated soil-water characteristics test and unsaturated uniaxial compression test were conducted on the specimens compacted at sub-zero temperature and continuous freezing & thawing condition to investigate change of unsaturated characteristics and matric suction. Based on the test results, the change of matric suction and the decrease of strength and stiffness were observed with the freezing & thawing conditions. Especially in case of the weathered soil, the strength and matric suction were significantly reduced with lower temperature and more repetition of freezing & thawing cycles. This result implies that compaction of sub-zero temperature and freezing & thawing cycles will have a considerable influence on the stability of the ground.