• Title/Summary/Keyword: unsaturated hydraulic conductivity

Search Result 68, Processing Time 0.032 seconds

Determination of the Unsaturated Hydraulic Conductivity Function (불포화 투수계수함수에 대한 연구)

  • 황창수;김태형
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.47-51
    • /
    • 2004
  • An unsaturated hydraulic conductivity function and a soil-water characteristic curve are the essential constitutive factors in studying unsaturated soils. In order to obtain the unsaturated hydraulic conductivity function, prediction functions, which are based on the soil-water characteristic curve, have been used because it is difficult to measure the unsaturated hydraulic conductivity function directly. In this study, a parameter estimation method using the flow pump technique is introduced to determine the unsaturated hydraulic conductivity function. This method provides more accurate and independent solution than previous methods for the determination of the unsaturated hydraulic conductivity function which is not subordinate to the soil-water characteristic curve or prediction models.

Evaluation of Hydraulic Conductivity Function in Unsaturated Soils using an Inverse Analysis (역해석기법을 이용한 불포화토 투수계수함수 산정에 관한 연구)

  • Lee, Joonyong;Han, Jin-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.1-11
    • /
    • 2013
  • Unsaturated hydraulic conductivity function is one of key parameters to solve the flow phenomena in problems of landslide. Prediction models for hydraulic conductivity function related to soil-water retention curve equations in many geotechnical applications have been still used instead of direct measurement of the hydraulic conductivity function since prediction models from soil-water retention curve equations are attractive for their fast and easy use and low cost. However, many researchers found that prediction models for the hydraulic conductivity function can not predict the hydraulic conductivity exactly in comparison with experimental outputs. This research introduced an inverse analysis to evaluate the hydraulic conductivity function corresponding to experimental output from the flow pump system. Optimisation process was carried out to obtain the hydraulic conductivity function. This research showed that the inverse analysis with flow pump system was suitable to assess the hydraulic conductivity in unsaturated soil, and the prediction models for the hydraulic conductivity were led to the significant discrepancy from actual experimental outputs.

The Method for Evaluating Unsaturated Hydraulic Conductivity of the Bentonite-buffer Using Relative Humidity (상대습도를 이용한 벤토나이트 완충재의 불포화 수리전도도 평가방안)

  • Lee, Hang-Bok;Kim, Jin-Seop;Choi, Young-Chul;Choi, Heui-Joo;Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • Unsaturated hydraulic conductivity of the bentonite-buffer was evaluated using the relative humidity data. The method for calculating unsaturated hydraulic conductivity was deduced from the general analytical equation representing the movement of water in unsaturated media, which was applied to the experimental results of water infiltration tests for identifying the behavior of unsaturated hydraulic conductivity according to the water saturation. Unlike the saturated condition, the hydraulic gradient and water flux were irregularly changed, and the unsaturated hydraulic conductivity was increased with increasing the experimental time. Swelling of bentonite grains due to the water absorption increased the volume and size of pore within bentonite, resulting in the increase of water velocity and unsaturated hydraulic conductivity. This result suggested the necessity of further investigation on the correlation between the swelling degree of bentonite-buffer and unsaturated hydraulic conductivity. The method used in this study can be useful technique for evaluating long-term hydraulic performance of bentonite-buffer in the radioactive waste disposal system.

Relationship between In-situ Hydraulic Conductivity and Van Genuchten Parameters of Unsaturated Fractured Hornfels (불포화 균열 혼펠스의 현장 수리전도도와 반 게누텐 매개변수의 상관성)

  • Cheong, Jae-Yeol;Cho, HyunJin;Kim, Soo-Gin;Ok, Soonil;Kim, Kue-Young;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • Unsaturated hydraulic conductivity of near-surface unconsolidated layers depends on the physical properties and water content of the unconsolidated layers. So far, many studies have been conducted on the unsaturated hydraulic conductivity of near-surface unconsolidated layers. However, researches on hydraulic conductivity of unsaturated fractured rocks have been relatively rare. In relation to the construction of a low/intermediate level radioactive waste surface-disposal facility, this study compared and analyzed van Genuchten parameters (α, n) in the laboratory and the hydraulic conductivity obtained in field tests for fractured hornfels at a radioactive-waste disposal site of Korea. The relationship between the field hydraulic conductivity and van Genuchten parameters using data from the ten depth intervals of three boreholes resulted in that the correlation coefficient (R) between the hydraulic conductivity and the van Genuchten parameter α was 0.7607, showing positive correlation whereas the R between the hydraulic conductivity and the van Genuchten shape-defining parameter n was -0.8720, showing negative correlation. Hence, this study confirmed the relationship between the field hydraulic conductivity and the van Genuchten unsaturated functions for the unsaturated fractured hornfels.

로그분포모형을 이용한 토양입도분포로부터의 불포화수리전도도 추정

  • 황상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.99-101
    • /
    • 2003
  • Unsaturated hydraulic conductivity models have been widely used for the numerical modeling of water flow and contaminant transport in soils. In this study, a simple hydraulic conductivity model is developed by using information of particle-size distribution from the lognormal distribution model and its results are compared with those from the Kosugi-Mualem (KM) model. The accuracy of the proposed model is verified for observed data chosen from the international UNSODA database. Results showed that the proposed model produces adequate predictions of hydraulic conductivities. Performance of this model is generally better than the KM function.

  • PDF

Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities (주문진 표준사의 상대밀도에 따른 불포화 투수계수함수 산정)

  • Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2369-2379
    • /
    • 2013
  • The Soil-Water Characteristics Curve (SWCC) is affected by the initial density of soil under unsaturated condition. Also, the characteristic of hydraulic conductivity is changed by the initial density of soil. To study the effect of initial density of unsaturated soil, SWCC and the Hydraulic Conductivity Function (HCF) of Jumoonjin sand with various relative densities, 40%, 60% and 75% were measured in both drying and wetting processes. As the results of SWCC estimated by van Genuchten (1980) model, the parameter related to Air Entry Value(AEV), ${\alpha}$ in the wetting process is larger than that in drying process, but the parameters related to the SWCC slope, n and the residual water content, m are larger than those in wetting process. The AEV is increased or Water Entry Value (WEV) is decreased with increasing the relative density of sand. The AEV is larger than the WEV at the same relative density of sand. As the results of HCF estimated by van Genuchten (1980) model which is one of the parameter estimation methods, the unsaturated hydraulic conductivity maintained at a saturated one in the low level of matric suctions and then suddenly decreased just before the AEV or the WEV. The saturated hydraulic conductivity in drying process is larger than that in wetting process. The saturated hydraulic conductivity is decreased with increasing the relative density of sand in both drying and wetting processes. Also, the hysteresis in unsaturated HCFs between drying and wetting process was occurred like the hysteresis in SWCCs. According to the test results, the AEV on SWCC is decreased and the saturated hydraulic conductivity is increased with increasing the initial density. It means that SWCC and HCF are affected by the initial density in the unsaturated soil.

Infiltration characteristics and hydraulic conductivity of weathered unsaturated soils

  • Song, Young-Suk;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Laboratory experiments were conducted with two different soil conditions to investigate rainfall infiltration characteristics. The soil layer materials that were tested were weathered granite soil and weathered gneiss soil. Artificial rainfall of 80 mm/hr was reproduced through the use of a rainfall device, and the volumetric water content and matric suction were measured. In the case of the granite soil, the saturation velocity and the moving direction of the wetting front were fast and upward, respectively, whereas in the case of the weathered gneiss soil, the velocity and direction were slow and downward, respectively. Rainfall penetrated and saturated from the bottom to the top as the hydraulic conductivity of the granite soil was higher than the infiltration capacity of the artificial rainfall. In contrast, as the hydraulic conductivity of the gneiss soil was lower than the infiltration capacity of the rainfall, ponding occurred on the surface: part of the rainfall first infiltrated, with the remaining rainfall subsequently flowing out. The unsaturated hydraulic conductivity function of weathered soils was determined and analyzed with matric suction and the effective degree of saturation.

Unsaturated Hydraulic Conductivity Functions of van Genuchten's and Campbell's models Tested by One-step Outflow Method through Tempe Pressure Cell (empe 압력셀에서 1-단계 유출법을 이용한 van Genchten모형과 Campbell모형의 불포화수리전도도 추정 검증)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.273-278
    • /
    • 2008
  • This study was carried out in order to test unsaturated hydraulic conductivity estimation of van Genuchten's and Campbell's models using one-step outflow method through Tempe pressure cell. The undisturbed soil cores (columns) were taken from Ap1, B1 and C horizons of Songjeong series (the fine loamy, mesic family of Typic Hapludults). After the saturated hydraulic conductivity Ks of the cores was determined by constant head method, water outflow rate and retentivity of cores were measured in Tempe pressure cell. Fitted curves by models accorded to measured data except for both end of pressure range. In near-saturated condition, measured water retention characteristics showed a relatively better fitness with Campbell's model than van Genuchten's. The soil unsaturated conductivity estimated by Campbell's model was higher than by van Genuchten's. In Ap1 and B1 horizon, the soil unsaturated conductivities obtained by one-step outflow method went between van Genuchten's and Campbell's hydraulic functions, slightly closer to van Genuchten's. In C horizon, van Genuchten's model had better fitness with the one-step outflow data. Consequently, van Genuchten's model generally had better fitness with measured hydraulic conductivity than Campbell's model at the soil water potential range of -10~-75 kPa, especially in C1 horizon. In near-saturated condition, Campbell's model could be thought as relatively accurate hydraulic model, because of the better fitness of Campbell's model with soil water retention data than van Genuchten's model.

Estimating Hydraulic Properties of Soil from Constriction-pore Size Distribution (수축공극크기분포를 이용한 지반의 수리학적 물성치 산정)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.27-34
    • /
    • 2022
  • Since water flow in the ground depends on the pore structure composed of soil grains, equations to predict the hydraulic properties based on the grain size have low accuracy. This paper presents a methodology to compute constriction-pore size distribution by Silveria's method and estimate saturated and unsaturated hydraulic properties of soils. Well-graded soil shows a uni-modal pore size distribution, and poor-graded soil does a bimodal distribution. Among theoretical models for saturated hydraulic conductivity using pore size distribution, Marshall model is well-matched with experimental results. Model formulas for soil-water characteristic curves and unsaturated hydraulic conductivity using the pore size distribution are proposed for hydraulic analysis of unsaturated soil. Continuous research is needed to select a model suitable to estimate hydraulic properties by applying the developed model formulas to various soils.