• Title/Summary/Keyword: unreinforced masonry walls

Search Result 56, Processing Time 0.019 seconds

Experimental vs. theoretical out-of-plane seismic response of URM infill walls in RC frames

  • Verderame, Gerardo M.;Ricci, Paolo;Di Domenico, Mariano
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.677-691
    • /
    • 2019
  • In recent years, interest is growing in the engineering community on the experimental assessment and the theoretical prediction of the out-of-plane (OOP) seismic response of unreinforced masonry (URM) infills, which are widespread in Reinforced Concrete (RC) buildings in Europe and in the Mediterranean area. In the literature, some mechanical-based models for the prediction of the entire OOP force-displacement response have been formulated and proposed. However, the small number of experimental tests currently available has not allowed, up to current times, a robust and reliable evaluation of the predictive capacity of such response models. To enrich the currently available experimental database, six pure OOP tests on URM infills in RC frames were carried out at the Department of Structures for Engineering and Architecture of the University of Naples Federico II. Test specimens were built with the same materials and were different only for the thickness of the infill walls and for the number of their edges mortared to the confining elements of the RC frames. In this paper, the results of these experimental tests are briefly recalled. The main aim of this study is comparing the experimental response of test specimens with the prediction of mechanical models presented in the literature, in order to assess their effectiveness and contribute to the definition of a robust and reliable model for the evaluation of the OOP seismic response of URM infill walls.

Nonlinear Analysis Model Considering Failure Mode of Unreinforced Masonry Wall (파괴모드를 고려한 비보강 조적벽체의 비선형 해석모델)

  • Baek, Eun-Lim;Kim, Jung-Hyun;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.33-40
    • /
    • 2014
  • The final purpose of this study is to evaluate the seismic performance of unreinforced masonry (URM) building more accurately. For that, shear strength and hysteresis model considering failure mode of the URM wall were discussed. The shear strength of URM wall without openings could be calculated by determining on the minimum value between the rocking strength suggested by domestic research and the sliding strength suggested by FEMA. The wall having openings could be predicted properly by the FEMA method. And the nonlinear hysteresis models for flexural and shear behaviors considering failure mode were proposed. As the result of the nonlinear cyclic analysis that carried out using suggested models, these analysis models were proper to represent the seismic behavior of URM walls.

In-plane and Out-of-plane Seismic Performances of Masonry Walls Strengthened with Steel-Bar Truss Systems (강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 내진 거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sanghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • This experimental study was conducted to evaluate the in-plane and out-of-plane seismic performances of an unreinforced masonry walls (URMs) strengthened with prestressed steel-bar truss systems developed in the present investigation. The truss systems were installed on both faces of the walls. All the wall specimens were subjected to lateral in-plane or out-of-plane cyclic loads at the fixed gravity stress of 0.25 MPa. The seismic performance of the strengthened specimens was compared to that measured in the counterpart URM. When compared with the lateral load-displacement curve of the URM, the strengthened walls exhibited the following improvements: 190% for initial stiffness, 180% for peak strength, 610% for accumulated energy dissipation capacity, and 510% for equivalent damping ratio under the in-plane state; the corresponding improvements under the out-of-plane state were 230% for initial stiffness, 190% for peak strength, 240% for accumulated energy dissipation capacity, and 120% for equivalent damping ratio, respectively. These results indicate that the developed technique is very promising in enhancing the overall seismic performance of URM.

Seismic vulnerability of Algerian reinforced concrete houses

  • Lazzali, Farah
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.571-588
    • /
    • 2013
  • Many of the current buildings in Algeria were built in the past without any consideration to the requirements of the seismic code. Among these buildings, there are a large number of individual houses built in the 1980's by their owners. They are Reinforced Concrete (RC) frame structures with unreinforced hollow masonry infill walls. This buildings type experienced major damage in the 2003 (Algeria) earthquake, generated by deficiencies in the structural system. In the present study, special attention is placed upon examining the vulnerability of RC frame houses. Their situation and their general features are investigated. Observing their seismic behavior, structural deficiencies are identified. The seismic vulnerability of this type of buildings depends on several factors, such as; structural system, plan and vertical configuration, materials and workmanship. The results of the vulnerability assessment of a group of RC frame houses are presented. Using a method based on the European Macroseismic Scale EMS-98 definitions, presented in previous studies, distribution of damage is obtained.

Shear Strength Evaluation of Unreinforced Masonry Walls Using Pushover Analysis (푸쉬오버 해석을 통한 비보강 조적벽체의 전단강도평가)

  • Lee, Jung-Han;Kim, Hye-Won;Kim, Jin-Seon;Park, Byung-Cheol;Yi, Waon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.746-749
    • /
    • 2010
  • 본 연구에서는 비보강 조적조에 대한 부재 비선형거동 및 비탄성힌지 속성을 고려할 수 있는 midas GEN Ver.741(해외판) 프로그램에 의한 비보강 조적벽체의 푸쉬오버 해석결과와 실험결과와의 비교를 통하여 비보강 조적조 건축물의 전단강도평가를 비롯하여 내진성능평가를 위한 역량스펙트럼 해석 프로그램을 검증하고자 한다. midas GEN Ver.741(해외판) 프로그램의 사용성 검증을 위하여 조적벽체의 축하중, 형상비, 쌓기방법(두께) 그리고 개구부 유무를 변수로 한 10개의 비보강 조적벽체의 전단강도를 비교 평가한다. 비보강 조적벽체에 대한 실험결과와 해석결과를 비교한 결과 각 시험체별 전단강도 값이 비교적 유사한 것으로 나타나며 국내 기존 비보강 조적조 건축물에 대한 해석방법으로 본 프로그램의 사용이 가능한 것으로 평가되었다.

  • PDF

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.