• Title/Summary/Keyword: unmanned vehicle

Search Result 1,635, Processing Time 0.031 seconds

Application of Wireless Power Transmission Technology to Contactless Umbilical Connector of Unmanned Vehicle (무선 이동체의 비접촉 배꼽장치를 위한 무선전력전송 기술의 응용)

  • Shin, Yujun;Park, Jaehyoung;Kim, Jonghoon;Kwon, Byunggi;Eun, Heehyun;Ahn, Seungyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.713-722
    • /
    • 2017
  • In the future battlefield, the role of the unmanned vehicle is very important. Currently, charging and management systems for unmanned vehicles are all wired. However, for convenience and stability, it is desirable that the charging of the unmanned vehicle uses wireless power transfer system. In this paper, we have studied the application of wireless power transfer system to the charging of unmanned vehicles. Considering the size of the unmanned vehicle and the required power, the transmission coil and the receiving coil are designed through the finite element analysis based magnetic field simulation. The coil was made according to the simulation results and the circuit simulation was performed through the measured parameter values. Finally, we show that wireless power transmission can be applied to unmanned mobile charging through actual experiments.

Applicable Focal Points of HFACS to Investigate Domestic Civil Unmanned Aerial Vehicle Accidents (국내 민간 무인항공기 사고조사 HFACS 적용중점)

  • Lee, Keon-Hee;Kim, Hyeon-Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.256-266
    • /
    • 2021
  • Domestic and foreign studies point to human factors as the main cause of unmanned aerial vehicle accidents, and HFACS is introduced as a technique to effectively analyze these human factors. Until now, domestic and foreign cases of analyzing the human factors of unmanned aerial vehicle accidents using HFACS were mainly targeted by military unmanned aerial vehicles, which can be used as an objective cause identification and similar accident prevention tool. In particular, identifying the focus of HFACS application considering the performance and operation conditions of domestic civilian unmanned aerial vehicles is expected to greatly help identify the cause and prevent recurrence in the event of an accident. Based on HFACS version 7.0, this study analyzed the accident investigation report data conducted by Korea Aviation and Railway Accident Investigation Board to identify the focus of HFACS application that can be used for domestic civilian unmanned aircraft accident investigations.

Classification and Evaluation Method for Autonomy Levels of Unmanned Maritime Systems (무인해양시스템의 자율 수준 분류 및 평가 방안)

  • Kwon, Laeun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.404-414
    • /
    • 2016
  • Autonomy of unmanned systems is important because the unmanned system with high level of autonomy is able to perform desired tasks in unstructured environments without continuous human guidance. Evaluation of their autonomy is vital to realize the autonomous operation ability of unmanned system. Compared to the methods of evaluating the level of autonomy(LOA) for an unmanned ground vehicle(UGV) and unmanned aerial vehicle(UAV), the method of expressing the LOA of unmanned maritime system(UMS) is not established yet. Since UMS has a unique characteristics in terms of operational area, mission complexity and required technologies, compared to the UGV and UAV, it is required to establish for expressing the LOA for UMS. This paper reviews the current approaches to assess the LOA of unmanned system and proposes potential metrics for UMS in order to determine the autonomy levels of UMS.

Analysis of Dedicated Mission Software Architecture for Unmanned Vehicles for Public Mission (공공임무를 위한 무인이동체 탑재용 임무소프트웨어 구조 분석)

  • Park, Jong-Hong;Choi, Sungchan;Ahn, Il-Yeup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.435-440
    • /
    • 2020
  • The application of the unmanned vehicles in various fields has been attracting attention, and the development of a service utilizing unmanned vehicles has been proceeding. As the service market using the unmanned vehicles rapidly increases, the demand for the development of software for performing the mission with unmanned vehicles is increasing. In particular, as the demand for unmanned vehicle utilization services for public missions such as fire detection, mail delivery, and facility management increases, the importance of developing mission software for unmanned vehicle is increasing. To develop common mission software, architecture design should be made so that unmanned vehicle service provider can easily develop software using reusable libraries or functions through analysis commonly required by various public institutions. In this paper, we discuss the research trends of mission software for public mission unmanned vehicles. In addition, the architecture design of developing formal mission software is proposed. Finally, we propose a data transfer architecture between mission software and data platform.

Photogrammetric Crack Detection Method in Building using Unmanned Aerial Vehicle (사진측량법을 활용한 무인비행체의 건축물 균열도 작성 기법)

  • Jeong, Dong-Min;Lee, Jong-Hoon;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • Recently, with the development of the fourth industrial revolution that has been achieved through the fusion of information and communication technology (ICT), the technologies of AI, IOT, BIG-DATA, it is increasing utilization rate by industry and research and development of application technologies are being actively carried out. Especially, in the case of unmanned aerial vehicles, the construction market is expected to be one of the most commercialized areas in the world for the next decade. However, research on utilization of unmanned aerial vehicles in the construction field in Korea is insufficient. In this study, We have developed a quantitative building inspection method using the unmanned aerial vehicle and presented the protocol for it. The proposed protocol was verified by applying it to existing old buildings, and defect information could be quantified by calculating length, width, and area for each defect. Through this technical research, the final goal is to contribute to the development of safety diagnosis technology using unmanned aerial vehicle and risk assessment technology of buildings in case of disaster such as earthquake.

Designing a Vehicles for Open-Pit Mining with Optimized Scheduling Based on 5G and IoT

  • Alaboudi, Abdulellah A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancement coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. To improve the convergence, distribution, and diversity of the classic, rapidly non-dominated genetic trial algorithm, to solve limited high-dimensional multi-objective problems, we propose a decomposition-based restricted genetic algorithm for dominance (DBCDP-NSGA-II).

A numerical analysis for the dynamic behavior of ROV launcher and 1st cable under combined excitations (결합가진 하의 ROV 런쳐와 케이블의 동적거동 수치 해석)

  • KWON DO-YOUNG;PARK HAN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.198-203
    • /
    • 2004
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The first cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A ROV launcher is also excited by the 1st cable motion. A numerical method is necessary for analysing the dynamic behaviour of the first marine cable and the ROV launcher. In this study, a numerival program is appled to a 6,000m long cable for a deep-sea unmanned underwater vehicle to shaw shows the dynamic behaviour of the cable and the ROV launcher under combined excitations.

  • PDF

[Retracted]Design and Implementation of Optimized Profile through analysis of Navigation Data Analysis of Unmanned Aerial Vehicle ([논문철회]무인비행기의 항행 데이터 분석을 통한 최적화된 프로파일 설계 및 구현)

  • Lee, Won Jin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.237-246
    • /
    • 2022
  • Among the technologies of the 4th industrial revolution, drones that have grown rapidly and are being used in various industries can be operated by the pilot directly or can be operated automatically through programming. In order to be controlled by a pilot or to operate automatically, it is essential to predict and analyze the optimal path for the drone to move without obstacles. In this paper, after securing and analyzing the pilot training dataset through the unmanned aerial vehicle piloting training platform designed through prior research, the profile of the dataset that should be preceded to search and derive the optimal route of the unmanned aerial vehicle was designed. The drone pilot training data includes the speed, movement distance, and angle of the drone, and the data set is visualized to unify the properties showing the same pattern into one and preprocess the properties showing the outliers. It is expected that the proposed big data-based profile can be used to predict and analyze the optimal movement path of an unmanned aerial vehicle.

Fuzzy Algorithm Development for the Integration of Vehicle Simulator with All Terrain Unmanned Vehicle (험로 주행용 무인차량과 차량 시뮬레이터의 융합을 위한 퍼지 알고리즘 개발)

  • Yun, Duk-Sun;Yu, Hwan-Sin;Lim, Ha-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • In this research, the main theme is the system integration of driving simulator and unmanned vehicle. The total system is composed of the mater system and the slave system. The master system has a cockpit system and the driving simulator. The slave system means an unmanned vehicle, which is composed of the actuator system the sensory system and the vision system. The communication system is composed of RS-232C serial communication system which combines the master system with the slave system. To integrate both systems, the signal classification and system characteristics considered DSP(Digital Signal Processing) filter is designed with signal sampling and measurement theory. In addition, to simulate the motion of tele-operated unmanned vehicle on the driving simulator, the classical washout algorithm is applied to this filter, because the unmanned vehicle does not have a limited working space, while the driving simulator has a narrow working space and it is difficult to cover all the motion of the unmanned vehicle. Because the classical washout algorithm has a defect of fixed high pass later, fuzzy logic is applied to reimburse it through an adaptive filter and scale factor for realistic motion generation on the driving simulator.

  • PDF

Design of the Autopilot Algorithm for Unmanned Aerial Vehicle (UAV) & Its Flight Test

  • Kyung, Hong-Sung;Hyun, Wee-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.3-141
    • /
    • 2001
  • Since 1990´s, there has been many researches for the development of the Unmanned Aerial Vehicle (UAV). Especially, for the development of digital electronics, the technologies of UAV toward to the miniaturization low-cost, and high reliability. Therefore, recent trends for the development of UAV are focused on the development modern Flight Control System (FCS). In this paper, focusing on the FCS, the development process for Sejong Unmanned Research Vehicle -1 (SURV-1) from design to flight test is presented.

  • PDF