• Title/Summary/Keyword: unmanned vehicle

Search Result 1,634, Processing Time 0.027 seconds

Combining 2D CNN and Bidirectional LSTM to Consider Spatio-Temporal Features in Crop Classification (작물 분류에서 시공간 특징을 고려하기 위한 2D CNN과 양방향 LSTM의 결합)

  • Kwak, Geun-Ho;Park, Min-Gyu;Park, Chan-Won;Lee, Kyung-Do;Na, Sang-Il;Ahn, Ho-Yong;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.681-692
    • /
    • 2019
  • In this paper, a hybrid deep learning model, called 2D convolution with bidirectional long short-term memory (2DCBLSTM), is presented that can effectively combine both spatial and temporal features for crop classification. In the proposed model, 2D convolution operators are first applied to extract spatial features of crops and the extracted spatial features are then used as inputs for a bidirectional LSTM model that can effectively process temporal features. To evaluate the classification performance of the proposed model, a case study of crop classification was carried out using multi-temporal unmanned aerial vehicle images acquired in Anbandegi, Korea. For comparison purposes, we applied conventional deep learning models including two-dimensional convolutional neural network (CNN) using spatial features, LSTM using temporal features, and three-dimensional CNN using spatio-temporal features. Through the impact analysis of hyper-parameters on the classification performance, the use of both spatial and temporal features greatly reduced misclassification patterns of crops and the proposed hybrid model showed the best classification accuracy, compared to the conventional deep learning models that considered either spatial features or temporal features. Therefore, it is expected that the proposed model can be effectively applied to crop classification owing to its ability to consider spatio-temporal features of crops.

Change Detection of Building Demolition Area Using UAV (UAV를 활용한 건물철거 지역 변화탐지)

  • Shin, Dongyoon;Kim, Taeheon;Han, Youkyung;Kim, Seongsam;Park, Jesung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.819-829
    • /
    • 2019
  • In the disaster of collapse, an immediate response is needed to prevent the damage from worsening, and damage area calculation, response and recovery plan should be established. This requires accurate detection of the damage affected area. This study performed the detection of the damaged area by using UAV which can respond quickly and in real-time to detect the collapse accident. The study area was selected as B-05 housing redevelopment area in Jung-gu, Ulsan, where the demolition of houses and apartments in progress as the redevelopment project began. This area resembles a collapsed state of the building, which clear changes before and after the demolition. UAV images were acquired on May 17 and July 9, 2019, respectively. The changing area was considered as the damaged area before and after the collapse of the building, and the changing area was detected using CVA (Change Vector Analysis) the Representative Change Detection Technique, and SLIC (Simple Linear Iterative Clustering) based superpixel algorithm. In order to accurately perform the detection of the damaged area, the uninterested area (vegetation) was firstly removed using ExG (Excess Green), Among the objects that were detected by change, objects that had been falsely detected by area were finally removed by calculating the minimum area. As a result, the accuracy of the detection of damaged areas was 95.39%. In the future, it is expected to be used for various data such as response and recovery measures for collapse accidents and damage calculation.

Extraction of Individual Trees and Tree Heights for Pinus rigida Forests Using UAV Images (드론 영상을 이용한 리기다소나무림의 개체목 및 수고 추출)

  • Song, Chan;Kim, Sung Yong;Lee, Sun Joo;Jang, Yong Hwan;Lee, Young Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1731-1738
    • /
    • 2021
  • The objective of this study was to extract individual trees and tree heights using UAV drone images. The study site was Gongju national university experiment forest, located in Yesan-gun, Chungcheongnam-do. The thinning intensity study sites consisted of 40% thinning, 20% thinning, 10% thinning and control. The image was filmed by using the "Mavic Pro 2" model of DJI company, and the altitude of the photo shoot was set at 80% of the overlay between 180m pictures. In order to prevent image distortion, a ground reference point was installed and the end lap and side lap were set to 80%. Tree heights were extracted using Digital Surface Model (DSM) and Digital Terrain Model (DTM), and individual trees were split and extracted using object-based analysis. As a result of individual tree extraction, thinning 40% stands showed the highest extraction rate of 109.1%, while thinning 20% showed 87.1%, thinning 10% showed 63.5%, and control sites showed 56.0% of accuracy. As a result of tree height extraction, thinning 40% showed 1.43m error compared with field survey data, while thinning 20% showed 1.73 m, thinning 10% showed 1.88 m, and control sites showed the largest error of 2.22 m.

Evaluation of Applicability of RGB Image Using Support Vector Machine Regression for Estimation of Leaf Chlorophyll Content of Onion and Garlic (양파 마늘의 잎 엽록소 함량 추정을 위한 SVM 회귀 활용 RGB 영상 적용성 평가)

  • Lee, Dong-ho;Jeong, Chan-hee;Go, Seung-hwan;Park, Jong-hwa
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1669-1683
    • /
    • 2021
  • AI intelligent agriculture and digital agriculture are important for the science of agriculture. Leaf chlorophyll contents(LCC) are one of the most important indicators to determine the growth status of vegetable crops. In this study, a support vector machine (SVM) regression model was produced using an unmanned aerial vehicle-based RGB camera and a multispectral (MSP) sensor for onions and garlic, and the LCC estimation applicability of the RGB camera was reviewed by comparing it with the MSP sensor. As a result of this study, the RGB-based LCC model showed lower results than the MSP-based LCC model with an average R2 of 0.09, RMSE 18.66, and nRMSE 3.46%. However, the difference in accuracy between the two sensors was not large, and the accuracy did not drop significantly when compared with previous studies using various sensors and algorithms. In addition, the RGB-based LCC model reflects the field LCC trend well when compared with the actual measured value, but it tends to be underestimated at high chlorophyll concentrations. It was possible to confirm the applicability of the LCC estimation with RGB considering the economic feasibility and versatility of the RGB camera. The results obtained from this study are expected to be usefully utilized in digital agriculture as AI intelligent agriculture technology that applies artificial intelligence and big data convergence technology.

A Study of Model-Based Aircraft Safety Assessment (모델기반 항공기 안전성평가에 관한 연구)

  • Kim, Ju-young;Lee, Dong-Min;Lee, Byoung-Gil;Gil, Gi-Nam;Kim, Kyung-Nam;Na, Jong-Whoa
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.24-32
    • /
    • 2021
  • Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

Drone Deployment Using Coverage-and-Energy-Oriented Technique in Drone-Based Wireless Sensor Network (드론 기반 무선 센서 네트워크에서의 커버리지와 에너지를 고려한 드론 배치)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.15-22
    • /
    • 2019
  • Awireless sensor network utilizes small sensors with a low cost and low power being deployed over a wide area. They monitor the surrounding environment and gather the associated information to transmit it to a base station via multi-hop transmission. Most of the research has mainly focused on static sensors that are located in a fixed position. Unlike a wireless sensor network based on static sensors, we can exploit drone-based technologies for more efficient wireless networks in terms of coverage and energy. In this paper, we introduce a transmission power model and a video encoding power model to design the network environment. We also explain a priority mapping scheme, and deploy drones oriented for network coverage and energy consumption. Through our simulations, this research shows coverage and energy improvements in adrone-based wireless sensor network with fewer sensors, compared to astatic sensor-based wireless sensor network. Concretely, coverage increases by 30% for thedrone-based wireless sensor network with the same number of sensors. Moreover, we save an average of 25% with respect to the total energy consumption of the network while maintaining the coverage required.

The Air Space System and UVA's Regulation in Japanese Civil Aeronautics Act (일본 항공법상의 공역체계와 무인항공기 규제)

  • Kim, Young-Ju
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.115-168
    • /
    • 2018
  • An amendment to Japanese Civil Aeronautics Act came into effect December 10, 2015. The Act prohibits flying drones over residential areas or areas surrounding an airport without permission from the Minister of Land, Infrastructure and Transportation. Flying drones during night time and during an event is also prohibited. The term "UAV" or "UA" means any aeroplane, rotorcraft, glider or airship which cannot accommodate any person on board and can be remotely or automatically piloted (Excluding those lighter than a certain weight (200 grams). Any person who intends to operate a UAV is required to follow the operational conditions listed below, unless approved by the Minister of Land, Infrastructure, Transport and Tourism; (i) Operation of UAVs in the daytime, (ii) Operation of UAVs within Visual Line of Sight (VLOS), (iii) Maintenance of a certain operating distance between UAVs and persons or properties on the ground/water surface, (iv) Do not operate UAVs over event sites where many people gather, (v) Do not transport hazardous materials such as explosives by UAV, (vi) Do not drop any objects from UAVs. Requirements stated in "Airspace in which Flights are Prohibited" and "Operational Limitations" are not applied to flights for search and rescue operations by public organizations in case of accidents and disasters. This paper analyzes some issues as to regulations of UAVs in Korean Aviation Safety Act by comparing the regulations of UAVs in Japanese Civil Aeronautics Act. This paper, also, offers some implications and suggestions for regulations of UAVs under Korean Aviation Safety Act.

An Aerodynamic Modeling and Simulation of a Folding Tandem Wing Type Aerial Launching UAV (접이식 직렬날개형 공중투하 무인비행체의 공력 모델링 및 시뮬레이션)

  • Lee, Seungjin;Lee, Jungmin;Ahn, Jeongwoo;Park, Jinyong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • The aerial launching UAV(Unmanned Aerial Vehicle) mainly uses a set of folding tandem wings to maximize flight performance and minimize the space required for mounting in a mothership. This folding tandem wing has a unique aerodynamic problem that is different from the general type of fixed wing aircraft, such as the rear wing interference problem caused by the wing of the front wing wake and vortex, and the imbalance of the pivot moment applied to the front and rear wings when the wing is deployed. In this paper, we have modeled and simulated various cases through computational fluid dynamics based on the finite volume method and analyzed various aerodynamic phenomena of the tandem wing type aircraft. We find that the front wing shall be installed higher than the rear for minimizing the wake influence and the rear wing can be deployed faster than the front because of the pivot moment due to aerodynamic forces. Also, considering the pivot moment due to aerodynamic force, the rear wing can be deployed much faster than the front wing. Therefore, it is necessary to consider it when developing the wing deploy mechanism.

Comparison of Rooftop Surface Temperature and Indoor Temperature for the Evaluation of Cool Roof Performance according to the Rooftop Colors in Summer: Using Thermal Infrared Camera Mounted on UAV (옥상 색상에 따른 쿨루프 성능평가를 위한 여름철 옥상 표면 및 실내온도 비교 분석 : 무인항공기에 장착된 열적외선 카메라를 이용하여)

  • Lee, Ki Rim;Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • The intensity and the number of days of high temperature occurrence are also high and record heat occurred. In addition, the global warming phenomenon is intensifying globally, and especially in South Korea, the urban heat island phenomenon is also occurring due to rapid urbanization due to rapid industrial development. As the temperature of the city rises, it causes problems such as the comfort of the residential living and the cooling load. In this study, the cool roof performance is evaluated according to the roof color to reduce these problems. Unlike previous studies, UAV(Unmanned Aerial Vehicle) thermal infrared camera was used to obtain the surface temperature (white, grey, green, blue, brown, black) according to the rooftop color by remote sensing technique. As a result, the surface temperature of white color was $11{\sim}20^{\circ}C$ lower than other colors. Also air conditioning temperature of white color was $1.5{\sim}4.4^{\circ}C$ lower than other colors and the digital thermometer of white color was about $1.5{\sim}3.5^{\circ}C$ lower than other colors. It was confirmed that the white cool roof performance is the best, and the UAV and the thermal infrared camera can confirm the cool roof performa.

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.