• Title/Summary/Keyword: unmanned system

Search Result 1,752, Processing Time 0.03 seconds

GPS and DR Navigation System for Unmanned 9round Vehicle (무인지상차량을 위한 GPS와 DR을 이용한 항법시스템)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF

Research of the Unmanned Vehicle Control and Modeling for Obstacle Detection and Avoidance (물체인식 및 회피를 위한 무인자동차의 제어 및 모델링에 관한 연구)

  • 김상겸;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.183-192
    • /
    • 2003
  • Obstacle detection and avoidance are considered as one of the key technologies on an unmanned vehicle system. In this paper, we propose a method of obstacle detection and avoidance and it is composed of vehicle control, modeling, and sensor experiments. Obstacle detection and avoidance consist of two parts: one is longitudinal control system for acceleration and deceleration and the other is lateral control system for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control system of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are evaluated through road tests.

The Development of Collision Avoidance Algorithm for Unmanned Vehicle Using Ultrasonic Range Sensors

  • Mohammad, Rahmati;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.1-23
    • /
    • 2001
  • The unmanned vehicle is composed of three parts the front & side sensor system for keeping the lane and avoiding obstacles, the acceleration & brake control system for longitudinal motion control, and the steering control system for the lateral motion control. Each system helps the unmanned vehicle of which should take notice of its location and recognize obstacles around the place by itself and make a decision how much fast to proceed according to circumstances. During the operation, the control strategy that the vehicle can detect obstacles and avoid collision on the road involves with vehicle velocity very much. Therefore, We have to define a traction system which is powered by DC motor so that, unmanned vehicle can control its velocity accurately. In this study, we find mechanical and ...

  • PDF

Design of the Unmanned Solar Vehicle with Quick Response of Maximum Power Point Tracking (최대 전력점 추종의 속응성을 고려한 무인 태양광 자동차 시스템 설계)

  • Shin, Yesl;Lee, Kyo-Beum;Jeon, Yong-Ho;Song, Bong-Sob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.376-386
    • /
    • 2013
  • This paper proposes an improved Maximum Power Point Tracking method and design methods of unmanned solar vehicle system by parts of hardware, unmanned driving control and power conversion. The hardware design is offered on the weight reduction and structural reliability by using structural analysis software. The technique of curve fitting is applied to unmanned control system due to minimizing the vehicle's behavior. Furthermore, lateral controller applying actuator dynamics is robust enough to prevent performance degradation by measurement noise regarding position and heading angle. The power conversion system contains battery charger system and tapped-inductor boost converter. In the battery charger system, variable step-size MPPT is conducted for quick response of maximum power point tracking. The validity of the proposed algorithm are verified by simulations and experiments.

Development of System Architecture and Communication Protocol for Unmanned Ground Vehicle (무인자율주행차량의 시스템 아키텍쳐 및 통신 프로토콜 설계)

  • Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.873-880
    • /
    • 2008
  • This paper deals with the peer-to-peer data communication to connect each distributed levels of developed unmanned system according to the JAUS. The JAUS is to support the acquisition of unmanned system by providing a mechanism for reducing system life-cycle costs. Each of distributed levels of the JAUS protocol divides into a system, some of subsystems, nodes and components/instances, each of which may be independent or interdependence. We have to distribute each of the levels because high performance is supported in order to create several sub-processor computing data in one processor with high CPU speed performance. To complement such disadvantage, we must think the concept that a distributed processing agrees with separating each of levels from the JAUS protocol. Therefore, each of distributed independent levels send data to another level and then it has to be able to process the received data in other levels. So, peer-to-peer communication has to control a data flow of distributed levels. In this research, we explain each of levels of the JAUS and peer-to-peer communication structure among the levels using our developed unmanned ground vehicle.

Development of Autonomous Loading and Unloading for Network-based Unmanned Forklift (네트워크 기반 무인지게차를 위한 팔레트 자율적재기술의 개발)

  • Park, Jee-Hun;Kim, Min-Hwan;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1051-1058
    • /
    • 2011
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. Especially, automation of pallet loading and unloading technique is useful for enhancing performance of logistics and reducing cost for automation system. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control, and so on. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. This paper presents a vision sensorbased autonomous loading and unloading for network-based unmanned forklift where system components are connected to a shared CAN network. Functions such as image processing and control algorithm are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. And the experimental results show that proposed architecture can be an appropriate choice for autonomous loading in the unmanned forklift.

A Study on the System Configuration and Communication Equipment Operation for Mission and Control of Small UAV (소형 무인항공기의 임무 및 제어를 위한 시스템 구성과 통신 장비 운용에 대한 연구)

  • Ha, Young-Seok
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.118-124
    • /
    • 2019
  • As Unmanned Aerial Vehicles technology has been widespread, various types of unmanned aircraft and mission equipment have been developed in line with mission diversification. Especially in Korea, small unmanned aerial vehicles have been actively developed. In addition, flight control system and mission equipment interface system for effective control of small unmanned aerial vehicles, efficient communication system configuration and operation for transmission to ground operated systems by processing data are required. This paper addresses efficient system structure and operation of communication equipment for missions and control of small unmanned aerial vehicles.

System Identification of a Small Unmanned Rotorcraft (소형 무인 헬리콥터의 시스템 식별)

  • Ryu, Seong-Sook;Song, Yong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.44-53
    • /
    • 2009
  • In this paper, Recursive Least Squares (RLS) and Fourier Transform Regression (FTR) methods for estimating stability and control derivatives of small unmanned helicopter are evaluated together with MMLE technique. Flight data simulated by using a commercial small-scale helicopter model are exploited to estimate the parameters with accuracies for hover and cruise modes. The performances of the system identification methods are also compared by analyzing the responses of the reconstructed systems using estimated derivatives.

A study on network based long distance data interworking system using multiple unmanned vehicle (다수 무인이동체를 이용한 네트워크 기반의 원거리 데이터 연동 시스템에 관한 연구)

  • Son, Hyeon-seo;Choi, Sung-chan;Park, Jong-hong;Jung, Sung-wook;Ahn, Il-yeop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.605-607
    • /
    • 2022
  • As the industry using unmanned vehicles expands, scenarios in which multiple unmanned vehicles are applied to various fields are attracting attention. One unmanned vehicle has limitations in operating time and range, and by using multiple unmanned vehicles, it has the advantage of providing services in a much wider range and shortening the operating time. Taking advantage of these advantages, recent attempts are being made to apply a number of unmanned mobile vehicles to fields such as disasters and broadcasting beyond military use. In this paper, we present a scenario for a data interworking system that can send and receive data from a distance based on a network using multiple unmanned vehicles.

  • PDF

UNMANNED VEHICLE CONTROL AND MODELING FOR OBSTACLE AVOIDANCE

  • Kim, S.-G.;Kim, J.-H.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.173-180
    • /
    • 2003
  • Obstacle avoidance is considered as one of the key technologies in an unmanned vehicle system. In this paper, we propose a method of obstacle avoidance, which can be expressed as vehicle control, modeling, and sensor experiments. Obstacle avoidance consists of two parts: one longitudinal control system for acceleration; and deceleration and a lateral control system for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. The method proposed for vehicle control, modeling, and obstacle avoidance has been confirmed through vehicle tests.