• Title/Summary/Keyword: university building

Search Result 13,274, Processing Time 0.051 seconds

An Energy Performance Comparison of University Lecture Facilities for Energy Saving Building Design (에너지 절약형 건축물 설계를 위한 대학 강의동 형태별 에너지 성능 비교에 관한 연구)

  • Kim, Tae-Hoon;Seo, Ji-Hyo;Choo, Seung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.105-112
    • /
    • 2018
  • Global environmental problems are growing, and the importance of buildings with high energy consumption has been emphasized. In Korea, the Ministry of Land, Transport and Maritime Affairs has been promoting the mandatory zero energy building since 2020, and guidelines related to the zero energy building have been developed. In addition, based on the "Energy-saving Design Criteria for Buildings" of the "Green Building Promotion Act" in Korea, the standards for energy-saving design are specified and the energy saving plan is written. Besides, the 'Energy-saving construction standards for eco-friendly houses' also specify insulation, machinery, equipment, and sunshade. Also, there is little consideration about the cost such as construction cost and material cost which should be considered important in the construction stage. Therefore, this study aims at analysis of building type and energy performance versus materials for energy saving building design considering energy performance in planning aspect of initial design stage. In this study, because the variables can not be neglected in this study, it is selected as the lecture facility of the 'K' university campus building which can consider the remaining factors except the passive design element as the control variable, Energy performance analysis.

Updating BIM: Reflecting Thermographic Sensing in BIM-based Building Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.532-536
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

  • PDF

Analysis of surface design and panel optionsfor freeform building

  • Min Gyu Park;Han Guk Ryu
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.553-557
    • /
    • 2013
  • Roof and exterior wall are designed and constructed in a manner that prevents the accumulation of water within the wall and roof assembly in the formal building. However, in a freeform building there is no clear distinction between exterior wall and roof. In other words, the exterior walls and roof systems of the freeform building are integrated as a surface, unlike the formal building envelope. Therefore, freeform architecture needs a systemized envelope design method to perform functions of exterior wall and roof. However, in many cases, construction methods for roof and exterior wall are applied to freeform buildings without necessary alterations, which lead to incomplete design, leakage, cracks and other problems. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. The studies and case analysis are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces. This study attempts to analyze the pros and cons of each method for the concrete surface frame, and then presents the panel options for envelope system of the freeform architecture.

  • PDF

Multi-Layered Shell Model and Seismic Limit States of a Containment Building in Nuclear Power Plant Considering Deterioration and Voids (열화 및 공극을 고려한 원전 격납건물의 다층쉘요소모델과 내진성능 한계상태)

  • Nam, Hyeonung;Hong, Kee-Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.223-231
    • /
    • 2024
  • For the OPR1000, a standard power plant in Korea, an analytical model of the containment building considering voids and deterioration was built with multilayer shell elements. Voids were placed in the vulnerable parts of the analysis model, and the deterioration effects of concrete and rebar were reflected in the material model. To check the impact of voids and deterioration on the seismic performance of the containment building, iterative push-over analysis was performed on four cases of the analytical model with and without voids and deterioration. It was found that the effect of voids with a volume ratio of 0.6% on the seismic performance of the containment building was insignificant. The effect of strength reduction and cross-sectional area loss of reinforcement due to deterioration and the impact of strength increase of concrete due to long-term hardening offset each other, resulting in a slight increase in the lateral resistance of the containment building. To determine the limit state that adequately represents the seismic performance of the containment building considering voids and deterioration, the Ogaki shear strength equation, ASCE 43-05 low shear wall allowable lateral displacement ratio, and JEAC 4601 shear strain limit were compared and examined with the analytically derived failure point (ultimate point) in this study.

A Study on Vibration Isolation Technique of Building-augmented Wind Turbine (건물일체형 풍력발전기의 진동저감 기법 연구)

  • Lee, Jong Won;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.160-168
    • /
    • 2015
  • Vibration issue of a building structure due to a wind turbine should be resolved for the application of building-augmented wind turbine. In this study, a dynamic analysis for an horizontal-axis upwind wind turbine is carried out to calculate vibration excited to an example building structure. Characteristics of vertical vibration transfer of the building structure are analytically studied and compared with a criteria. Then, a method to isolate the vibration is presented by analyzing the vibration characteristics of the wind turbine, and verified by applying to the building structure.

EXTRACTING COMPLEX BUILDING FROM AIRBORNE LIDAR AND AIRBORNE ORTHIMAGERY

  • Nguyen, Dinh-Tai;Lee, Seung-Ho;Cho, Hyun-Kook
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.177-180
    • /
    • 2008
  • Many researches have been tried to extract building models and created a 3D cyber city from LiDAR data. In this paper, the approach of extracting complex building by using airborne LiDAR data combined with airborne orthoimagery has been performed. The pseudo-building elevations were derived from modified discrete return LiDAR data. Based on information property of the pseudo-height, building features could be extracted. The results of this study indicated the improvement of building extraction.

  • PDF

Design Optimization Using Conflicting Building Information - A case Study Focused on the View and Structure in High-Rise Building Design

  • Cheon, Janghwan
    • Architectural research
    • /
    • v.15 no.2
    • /
    • pp.69-75
    • /
    • 2013
  • Within residential high-rise market there are many value determining factors. Site condition, view, program, units and structure are important parameters that are directly related to the financial aspect of the project. However, most of the studies of high-rise building design focus on the facade and the shape strategies from an esthetic point of view without considering these factors. The objective of this study is to investigate new design approach that incorporates site, program and structural information at an early stage as a generator of building form and explore a wide range of strategies to negotiate these factors in the process of design/decision making. Not being based on designer's subjective preference or style, architects still can create interesting building design through integration and negotiation of various building information. Since this form is based on real data, not just play of form, we can expect that this form has great potential to be developed into real one at the later design phase.

Appraisal of Building Energy Systems considering Environment Constraint Conditions

  • Park, Tong-So
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • This study aims to find out sector effects with the appraisal of building energy systems of urban ecosystem considering cost effects and environmental constraints condition such as climatic change factors including $CO_2$ gas which are not dealt in the institutional boundary as components standards and performance standards on energy performance of each part of a building applied on heavy energy spending buildings at present. The results of the appraisal of building energy systems shows that the existing building energy systems are not enough to fulfil the environmental condition under the environmental constraints supposing QELROs(Quantified Emission Limitation and Reduction Objectives) of carbon-dioxide exhaust. Henceforth, it is needed to fulfill the environmental criteria required by the Climatic Change Agreement for improving the adiabatic performance of each part of a building and active using of the solar energy.

  • PDF

Dynamic Simulation of Annual Energy Consumption in an Office Building by Thermal Resistance-Capacitance Method

  • Lee, Chang-Sun;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.1-13
    • /
    • 1998
  • The basic heat transfer process that occurs in a building can best be illustrated by an electrical circuit network. Present paper reports the dynamic simulation of annual energy consumption in an office building by the thermal resistance capacitance network method. Unsteady thermal behaviors and annual energy consumption in an office building were examined in detail by solving the simultaneous circuit equations of thermal network. The results are used to evaluate the accuracy of the modified BIN method for the energy consumption analysis of a large building. Present thermal resistance-capacitance method predicts annual energy consumption of an office building with the same accuracy as that of response factor method. However, the modified BIN method gives 15% lower annual heating load and 25% lower cooling load than those from the present method. Equipment annual energy consumptions for fan, boiler and chiller in the HVAC system are also calculated for various control systems as CAV, VAV, FCU+VAV and FCU+CAV. FCU+CAV system appears to consume minimum annual energy among them.

  • PDF