• Title/Summary/Keyword: university building

Search Result 13,274, Processing Time 0.036 seconds

Site-response effects on RC buildings isolated by triple concave friction pendulum bearings

  • Ates, Sevket;Yurdakul, Muhammet
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.693-715
    • /
    • 2011
  • The main object of this study is to evaluate the seismic response effects on a reinforced concrete building isolated by triple concave friction pendulum (TCFP) bearings. The site-response effects arise from the difference in the local soil conditions at the support points of the buildings. The local soil conditions are, therefore, considered as soft, medium and firm; separately. The results on the responses of the isolated building are compared with those of the non-isolated. The building model used in the time history analysis, which is a two-dimensional and eight-storey reinforced concrete building with and without the seismic isolation bearings and/or the local soil conditions, is composed of two-dimensional moment resisting frames for superstructure and of plane elements featuring plane-stress for substructure. The TCFP bearings for isolating the building are modelled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. In order to investigate the efficiency of both the seismic isolation bearings and the site-response effects on the buildings, the time history analyses are elaborately conducted. It is noted that the site-response effects are important for the isolated building constructed on soft, medium or firm type local foundation soil. The results of the analysis demonstrate that the site-response has significant effects on the response values of the structure-seismic isolation-foundation soil system.

A Study on the Fire Fighting General Index for Fire Fighting of Crowded Wooden Building Cultural Asset (군집 목조 건축문화재의 화재대응을 위한 소방방재 종합지수 연구)

  • Kwon, Heung-Soon;Lee, Jeong-Soo
    • Journal of architectural history
    • /
    • v.21 no.2
    • /
    • pp.37-52
    • /
    • 2012
  • This research has set up the fire fighting general index for Fire fighting of Crowded Wooden Building Cultural Asset which is composed of traditional wooden building instinct or complex. The results of this study are as follows. First, Fire fighting general index for crowded wooden building cultural asset, it is necessary to set fire fighting priority by considering fire risk and cultural asset characteristic and establish the system to cope with fire disaster in the most effective way by arranging facilities with restricted resource. Second, Fire risk is the index to draw fire and spread risk of cultural asset by applying index calculation processes such as fire load, burning velocity and ignition material spread characteristic to various aspects such as individual building and complex and combining their results. Cultural asset importance index consists of individual building evaluation, publicity security degree, area importance evaluation and historical landscape degree evaluation. Third, for each index combination process, weight of each index is drawn on the basis of AHP analysis result that is performed to the specialists of related fields. The formula to apply and combine it is prepared to apply the model to include meaning of each index and comparative importance degree.

BIM and Thermographic Sensing: Reflecting the As-is Building Condition in Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.4
    • /
    • pp.16-22
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. Several case studies were conducted to experimentally evaluate their impact on BIM-based energy analysis to calculate energy load. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

A Study on the Analysis of Energy Consumption Patterns According to the Building Shapes with the Same Volume (동일 체적의 건물 형상에 따른 에너지 소비량 패턴에 대한 분석 연구)

  • Choi, Won-Ki;Kim, Heon-Joong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • This study was focused on the establishment of a fundamental DB(database) that is available in the building design process, so we performed the simulation analysis about the energy consumption on the various same volume buildings. Because energy consumption in building is affected by the exterior surface area, the ratio of long/short length in surface and the adjacent internal surface area etc.. For these purpose, we assumed the unit module and made a constructable 16 model buildings which are composed of the 16 unit modules. Then we analyzed the simulation using the TRNSYS 16 and the Seoul weather data. In results, energy consumption in building is more reduced that in case of the smaller exterior surface area, the lower stories building and the larger adjacent surface area etc.. Further study is to be required the sensitivity analysis on the various weather conditions, building shapes and window area etc..

A Study on the Government Office Building of Chongju Castle in the Late Yi-dynasty (청주읍성(淸州邑城) 관아공해고 - 규모(規模) 및 위치(位置) 추정(推定)을 중심(中心)으로 -)

  • Kim, Dong-Sik;Kim, Tai-Young
    • Journal of architectural history
    • /
    • v.8 no.1 s.18
    • /
    • pp.41-52
    • /
    • 1999
  • This study aims to infer the plan and location of the government office building in Chongju Castle in the Late Yi-dynasty. The conclusion is as follows: 1. The Chongju Castle Map(淸州邑城圖, late in the 18th century, hereinafter referred to CCM) provides the detail arrangement and location of Government Office Building in Chongju Castle. And the road structure and plan of the CCM is almost same with the present time. 2. As compared with CCM and a Chongju-land Registration Map(淸州面地籍原圖, 1913, CRM) to infer the location of the traditional government office building in Chongju Castle, the building locations of Gaek-Sa(客舍) Donghun(東軒)'s region in CCM are almost accordance with today's. But those of Byungyoung(兵營) Group's region are represented by a little error. So the locations of Byungyoung(兵營) Group's region rearranged, moved down to be in accordance with the approach circulation of Main Gate(閉門樓) which is shown in CRM. 3. The records, on the plan of the traditional government office building in Chongju Castle, have proved that the plan of Gaek-Sa was a width of 11 bay and a depth of 2 bay. A width of 3 bay drawn in CCM, the present plan of Donghun is a width of 7 bay and a depth of 4 bay. The main building and especially the double-storied Main Gate($4{\times}3$) of Byungyoung Group are exactly in keeping with the present road structure.

  • PDF

Energy and Economic Analysis of Heat Recovery Cogeneration Loop Integrated with Heat Pump System by Detailed Building Energy Simulation (건물 에너지 상세 해석을 통한 소형 열병합 발전 및 히트펌프 복합 시스템의 경제성 분석)

  • Seo, Dong-Hyun;Koh, Jae-Yoon;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • Up until recently, the energy and the economic analysis of a cogeneration system have been implemented by a manual calculation that is based on monthly thermal loads of buildings. In this study, a cogeneration system modeling validation with a detail building energy simulation, eQUEST, for a building energy and cost prediction has been implemented. By analyzing the hourly building electricity and thermal loads, it enables users to decide proper cogeneration system capacity and to estimate more accurate building energy consumption. eQUEST also verified the energy analysis when the heat pump system is integrated with the cogeneration system. The mechanical system configuration benefits from the high efficiency heat pump system while avoiding the building electricity demand increase. Economic analysis such as LCC (Life Cycle Cost) method is carried out to verify economical benefits of the system by applying actual utility rates of KEPCO(Korea Electricity Power COmpany) and KOGAS(KOrea GAS company).

Interference effects in a group of tall buildings closely arranged in an L- or T-shaped pattern

  • Zhao, J.G.;Lam, K.M.
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Interference effects in five square tall buildings arranged in an L- or T-shaped pattern are investigated in the wind tunnel. Mean and fluctuating shear forces, overturning moments and torsional moment are measured on each building with a force balance mounted at its base. Results are obtained at two values of clear separation between adjacent buildings, at half and a quarter building breadth. It is found that strong interference effect exists on all member buildings, resulting in significant modifications of wind loads as compared with the isolated single building case. Sheltering effect is observed on wind loads acting along the direction of an arm of the "L" or "T" on the inner buildings. However, increase in these wind loads from the isolated single building case is found on the most upwind edge building in the arm when wind blows at a slight oblique angle to the arm. The corner formed by two arms of buildings results in some wind catchment effect leading to increased wind pressure on windward building faces. Interesting interference phenomena such as negative drag force are reported. Interference effects on wind load fluctuations, load spectra and dynamic building responses are also studied and discussed.

A Study on generation characteristics of building integrated Photovoltaic system (건물일체형 태양광발전 시스템의 발전성능 분석)

  • Park, Jae-Wan;Shin, U-Cheul;Kim, Dae-Gon;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.

Cooperative Design Method for Building Projects (건축 프로젝트의 협력설계 방안)

  • Kim, Eun-Youn;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.7 no.4
    • /
    • pp.67-76
    • /
    • 2011
  • Two main features of the recent building project are the enlargement of the size and the technological complexity. Due to these features, the number or the size of organizations participating in building project is also increasing and the relationships between the organizations are becoming more interdependent than ever. Owing to these features, some delays or errors in the decision-making process in the phase of planning of a building project may influence many subjects related to the project. The most important factor for a successful project is to arbitrate confrontations and build cooperative relationships between parties who have different interests with one another in the project. Efforts were made to find out general features of building project and the features in the phase of planning in order to set a direction of this research. To solve problems in the phase of planning, the concept of 'cooperative design', which means that different features and interests of various organizations should be reflected from the phase of planning, was introduced. By introducing cooperative design in building projects, more rapid and objective decision-makings are possible.

  • PDF

Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm (경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.