• Title/Summary/Keyword: unimodal distributions

Search Result 34, Processing Time 0.022 seconds

On Bounds for Moments of Unimodal Distributions

  • Sharma, R.;Bhandaria, R.
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.3
    • /
    • pp.201-212
    • /
    • 2014
  • We provide a simple basic method to find bounds for higher order moments of unimodal distributions in terms of lower order moments when the random variable takes value in a given finite real interval. The bounds for moments in terms of the geometric mean of the distribution are also derived. Both continuous and discrete cases are considered. The bounds for the ratio and difference of moments are obtained. The special cases provide refinements of several well-known inequalities, such as Kantorovich inequality and Krasnosel'skii and Krein inequality.

THE LOGARITHMIC KUMARASWAMY FAMILY OF DISTRIBUTIONS: PROPERTIES AND APPLICATIONS

  • Ahmad, Zubair
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1335-1352
    • /
    • 2019
  • In this article, a new family of lifetime distributions by adding two additional parameters is introduced. The new family is called, the logarithmic Kumaraswamy family of distributions. For the proposed family, explicit expressions for some mathematical properties are derived. Maximum likelihood estimates of the model parameters are also obtained. This method is applied to develop a new lifetime model, called the logarithmic Kumaraswamy Weibull distribution. The proposed model is very flexible and capable of modeling data with increasing, decreasing, unimodal or modified unimodal shaped hazard rates. To access the behavior of the model parameters, a simulation study has been carried out. Finally, the potentiality of the new method is proved via analyzing two real data sets.

On the interpretation of color bimodality of extra-galactic globular clusters

  • Kim, Hak-Sub;Sohn, SangmoTony;Chung, Chul;Lee, Sang-Yoon;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.27.1-27.1
    • /
    • 2010
  • Globular cluster (GC) systems in most galaxies, particularly in ellipticals, show bimodal color distributions. Because broadband colors trace metallicity at old ages, this phenomenon has been commonly interpreted as bimodal metallicity distributions, implying the presence of two sub-populations in the globular cluster system within a galaxy. However, a new explanation has recently been proposed, in which the non-linear nature of color-metallicity relations induced by horizontal-branch stars can produce bimodal color distributions even from unimodal metallicity distributions. In this study, we put these two explanations to the test on the origin of color bimodality, using multi-band (U,B,V and I) photometry of globular clusters in NGC 1399, the central giant elliptical galaxy in Fornax galaxy cluster. We find significant changes in the morphology of color distributions when using different colors. The observation is also well reproduced by the Monte Carlo realization of GC color when a unimodal metallicity distribution and the theoretical non-linear color-metallicity relations are assumed. We discuss the implications regarding theories on galaxy formation and evolution.

  • PDF

A Sharp Cramer-Rao type Lower-Bound for Median-Unbiased Estimators

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.187-198
    • /
    • 1994
  • We derive a new Cramer-Rao type lower bound for the reciprocal of the density height of the median-unbiased estimators which improves most of the previous lower bounds and is attainable under much weaker conditions. We also identify useful necessary and sufficient condition for the attainability of the lower bound which is considerably weaker than those for the mean-unbiased estimators. It is shown that these lower bounds are attained not only for the family of continuous distributions with monotone likelihood ratio (MLR) property but also for the location and scale families with strong unimodal property.

  • PDF

A Methodology for Estimating the Uncertainty in Model Parameters Applying the Robust Bayesian Inferences

  • Kim, Joo Yeon;Lee, Seung Hyun;Park, Tai Jin
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.149-154
    • /
    • 2016
  • Background: Any real application of Bayesian inference must acknowledge that both prior distribution and likelihood function have only been specified as more or less convenient approximations to whatever the analyzer's true belief might be. If the inferences from the Bayesian analysis are to be trusted, it is important to determine that they are robust to such variations of prior and likelihood as might also be consistent with the analyzer's stated beliefs. Materials and Methods: The robust Bayesian inference was applied to atmospheric dispersion assessment using Gaussian plume model. The scopes of contaminations were specified as the uncertainties of distribution type and parametric variability. The probabilistic distribution of model parameters was assumed to be contaminated as the symmetric unimodal and unimodal distributions. The distribution of the sector-averaged relative concentrations was then calculated by applying the contaminated priors to the model parameters. Results and Discussion: The sector-averaged concentrations for stability class were compared by applying the symmetric unimodal and unimodal priors, respectively, as the contaminated one based on the class of ${\varepsilon}$-contamination. Though ${\varepsilon}$ was assumed as 10%, the medians reflecting the symmetric unimodal priors were nearly approximated within 10% compared with ones reflecting the plausible ones. However, the medians reflecting the unimodal priors were approximated within 20% for a few downwind distances compared with ones reflecting the plausible ones. Conclusion: The robustness has been answered by estimating how the results of the Bayesian inferences are robust to reasonable variations of the plausible priors. From these robust inferences, it is reasonable to apply the symmetric unimodal priors for analyzing the robustness of the Bayesian inferences.

A Study on the Distributions of Paraoxonase Activity and the Factors affecting Paraoxonase Activity of a Rural Population (일부 농촌주민 혈중 Paraoxonase 활성도의 분포 및 관련인자에 관한 조사연구)

  • Song, Jae-Cheol;Park, Hung-Bae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.2 s.30
    • /
    • pp.194-200
    • /
    • 1990
  • The paraoxonase (E. C. 3.1.1.2) is a major enzyme to detoxicate the organophosphorus and carbamate which are the most widely used as the agricultural spraying insecticides. To investgate the distributions of plasma paraoxonase activity and the factors affecting the enzyme activity, the plasmas of 945 Korean rural population were analysed with the modified Krisch's direct sphectrphotometry method. Three indices of the enzyme activity - basal activity, stimulated activity (by NaCl), % stimulation - were obtained from the analysis. Three indicies suggested unimodal distributions, so we couldn't identify the low activity group risk group to organophosphorus & carbamate insecticides poisoning. There is no significant relation between 3 actvity indicies and sex, age, or history of insecticide use (p>0.05). The basal activity and the stimulated activity have significant relationship and high coefficient of determination with the activities of their parents ($r^2$=0.30, 0.24 ; p<0.05), but the % stimulation does not ($r^2$=0.02 ; p<0.05). These results suggest that the activity of paraoxonase is determined mainly by the genetic factor.

  • PDF

A Modification of the Combined Estimator of Inter- and Intra-Block Estimators under an Arbitrary Convex Loss Function

  • Lee, Young-Jo
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.1
    • /
    • pp.21-25
    • /
    • 1987
  • The combined estimator of inter- and intra-block estimators in incomplete block designs can be expressed as a weighted average of two location estimators. The weight should be between 0 and 1. However, the negative variance component estimate could result in the weight being negative or larger than 1. In this paper, we show that if two location estimators have symmetric unimodal distributions, truncating the weight to 0 or 1 accordingly improves the combined estimator under an arbitrary convex loss function.

  • PDF

Comparison Study of Kernel Density Estimation according to Various Bandwidth Selectors (다양한 대역폭 선택법에 따른 커널밀도추정의 비교 연구)

  • Kang, Young-Jin;Noh, Yoojeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.173-181
    • /
    • 2019
  • To estimate probabilistic distribution function from experimental data, kernel density estimation(KDE) is mostly used in cases when data is insufficient. The estimated distribution using KDE depends on bandwidth selectors that smoothen or overfit a kernel estimator to experimental data. In this study, various bandwidth selectors such as the Silverman's rule of thumb, rule using adaptive estimates, and oversmoothing rule, were compared for accuracy and conservativeness. For this, statistical simulations were carried out using assumed true models including unimodal and multimodal distributions, and, accuracies and conservativeness of estimating distribution functions were compared according to various data. In addition, it was verified how the estimated distributions using KDE with different bandwidth selectors affect reliability analysis results through simple reliability examples.

Parameters estimation of the generalized linear failure rate distribution using simulated annealing algorithm

  • Sarhan, Ammar M.;Karawia, A.A.
    • International Journal of Reliability and Applications
    • /
    • v.13 no.2
    • /
    • pp.91-104
    • /
    • 2012
  • Sarhan and Kundu (2009) introduced a new distribution named as the generalized linear failure rate distribution. This distribution generalizes several well known distributions. The probability density function of the generalized linear failure rate distribution can be right skewed or unimodal and its hazard function can be increasing, decreasing or bathtub shaped. This distribution can be used quite effectively to analyze lifetime data in place of linear failure rate, generalized exponential and generalized Rayleigh distributions. In this paper, we apply the simulated annealing algorithm to obtain the maximum likelihood point estimates of the parameters of the generalized linear failure rate distribution. Simulated annealing algorithm can not only find the global optimum; it is also less likely to fail because it is a very robust algorithm. The estimators obtained using simulated annealing algorithm have been compared with the corresponding traditional maximum likelihood estimators for their risks.

  • PDF

A Hill-Sliding Strategy for Initialization of Gaussian Clusters in the Multidimensional Space

  • Park, J.Kyoungyoon;Chen, Yung-H.;Simons, Daryl-B.;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.1 no.1
    • /
    • pp.5-27
    • /
    • 1985
  • A hill-sliding technique was devised to extract Gaussian clusters from the multivariate probability density estimates of sample data for the first step of iterative unsupervised classification. The underlying assumption in this approach was that each cluster possessed a unimodal normal distribution. The key idea was that a clustering function proposed could distinguish elements of a cluster under formation from the rest in the feature space. Initial clusters were extracted one by one according to the hill-sliding tactics. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster goodness and used satisfactorily in test runs with Landsat multispectral scanner (MSS) data. The normalized divergence, defined by the cluster divergence divided by the entropy of the entire sample data, was utilized as a general separability measure between clusters. An overall clustering objective function was set forth in terms of cluster covariance matrices, from which the cluster compactness measure could be deduced. Minimal improvement of initial data partitioning was evaluated by this objective function in eliminating scattered sparse data points. The hill-sliding clustering technique developed herein has the potential applicability to decomposition of any multivariate mixture distribution into a number of unimodal distributions when an appropriate diatribution function to the data set is employed.