• Title/Summary/Keyword: unilateral labyrinthectomy (ULX)

Search Result 4, Processing Time 0.017 seconds

Effects of Uncaria Rhynchophylla on Vestibular Compensation in Unilateral Labyrinthectomized Rats (조구등(釣鉤藤)이 일측(一側) 전정기관(前庭器官) 손상(損像) 흰쥐의 전정보상(前庭補償)에 미치는 영향(影響))

  • Song, Jin-Ho;Lee, Sung-Ho;Kim, Min-Sun;Sohn, In-Chul;Park, Byung-Rim;Kim, Jae-Hyo
    • The Journal of Korean Medicine
    • /
    • v.20 no.3 s.39
    • /
    • pp.66-76
    • /
    • 1999
  • The purpose of this study was to asses the etlect of Uncaria rhynchophylla (UR). one of the oriental herbs having a capability to block calcium channels, on affecting vestibular compensation (VC) in Sprague - Dawley rats. Animals were divided into a drug treatment group receiving, UR per oral for 10 days preceding unilateral labyrinthectomy (ULX) and a control group with saline ingestion, To evaluate behavioral changes. horizontal spontaneous nystagmus (SN) and roll head tilt (RHT) were recorded by a video camem with zoom lens in the course of vestibular compensation (VC). Immunohistochemical staining was performed by conventional ABC method to visualize cFos-like immunoreactive (cFLI) neurons in the medial vestibular nuclei (MVN) and cFLI cells were counted by image analyzer. Bodyweight was increased significantly, about 35g, by UR treatment for 10 clays before ULX. Compared with the control group, the drug group showed significant reduction of RHT 6 hrs after ULX as well as fast disappearance of SN at early stages of vestibular compensation. Also, recovery of the spatial and temporal cFLI expressions in the bilateral MVN was accelerated 24 hrs after ULX. These results suggest that Uncaria rhynchophyila has a beneficial effect to ameliorate vestibular compensation in unilateral labryinthectomized rats.

  • PDF

Correlation Between Electrical Activity of Type I Neuron and c-Fos Expression in the Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats

  • Park, Byung-Rim;Doh, Nam-Yong;Kim, Min-Sun;Chun, Sang-Woo;Lee, Moon-Young;Lee, Sung-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.505-513
    • /
    • 1997
  • To search the correlations between electrical activity and c-Fos expression in the process of vestibular compensation, we examined the changes of those two parameters in the medial vestibular nuclei (MVN) of unilaterally labyrinthectomized (ULX) rats. Spontaneous nystagmus with fast component toward the intact side disappeared gradually within 48 hours. Fourty eight hours after ULX, directional preponderance of the eye movement induced by sinusoidal rotation of the whole body which represents the symmetry of bilateral vestibular functions showed less than 20% by rotation of 0.1, 0.2, and 0.5 Hz, indicating the recovery of symmetry in bilateral vestibular functions. Six hours after ULX, spontaneous electrical activity of type I neurons resulted in asymmetry between bilateral MVN, however, the asymmetry of the electrical activity was decreased 48 hours after ULX. Immunocytochemical staining revealed that ULX produced dramatic induction of c-Fos positive cells in the MVN bilaterally. The number of c-Fos immunoreactive cells in the contralateral MVN was significantly higher than those in the ipsilateral MVN (p<0.0001) 2 hours after ULX. Thereafter, the number of c-Fos positive cells decreased bilaterally and was slightly, but not significantly higher in the ipsilateral MVN at 48 hours after ULX. The present results suggest that both electrical activity of type I neurons and c-Fos expression in MVN following ULX will reflect underlying mechanisms of recovery process of vestibular compensation.

  • PDF

Effects of Electrical Stimulation of the Vestibular System on Neuronal Activity of the Ipsilateral Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats (일측 전정기관 손상 흰쥐에서 동측의 내측 전정신경핵 활동성에 대한 전정기관의 전기자극 효과)

  • Lee Moon-Yong;Kim Min-Sun;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.263-273
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of electrical stimulation on vestibular compensation following ULX in rats. Electrical stimulation (ES) with square pulse ($100{\sim}300uA$, 1.0 ms, 100 Hz) was applied to ampullary portion bilaterally for 6 and 24 hours in rats receiving ULX. After ES, animals that showed the recovery of vestibular symptoms by counting and comparing the number of spontaneous nystagmus were selected for recording resting activity of type I, II neurons in the medial vestibular nuclei (MVN) of the lesioned side. And then the dynamic neuronal activities were recorded during sinusoidal rotation at a frequency of 0.1 Hz and 0.2 Hz. The number of spontaneous nystagmus was significantly different 24 hours (p<0.01, n=10), but not 6 hours after ULX+ES. As reported by others, the great reduction of resting activity only in the type I neurons ipsilateral to lesioned side was observed 6, 24 hours after ULX compared to that of intact labyrinthine animal. However, the significant elevation (p<0.01) of type I and reduction (p<0.01) of type II neuronal activity were seen 24 hours after ULX+ES. Interestingly, gain, expressed as maximum neuronal activity(spikes/sec)/maximum rotational velocity(deg/sec), was increased in type I cells and decreased in type II cells 24 hours after ULX+ES in response to sinusoidal rotation at frequencies of both 0.1 Hz and 0.2 Hz. This result suggests that accompanying the behavioral recovery, the electrical stimulation after ULX has beneficial effects on vestibular compensation, especially static symptoms (spontaneous nystagmus), by enhancing resting activity of type I neurons and reducing that of type II neurons.

  • PDF

Temporal Changes in Neuronal Activity of the Bilateral Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats

  • Park, Byung-Rim;Lee, Moon-Young;Kim, Min-Sun;Lee, Sung-Ho;Na, Han-Jo;Doh, Nam-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.481-490
    • /
    • 1999
  • To investigate the changes in the responses of vestibular neurons with time during vestibular compensation, the resting activity and dynamic responses of type I and II neurons in the medial vestibular nuclei to sinusoidal angular acceleration were recorded following unilateral labyrinthectomy (ULX) in Sprague-Dawley rats. The unitary extracellular neuronal activity was recorded from the bilateral medial vestibular nuclei with stainless steel microelectrodes of $3{\sim}5\;M{\Omega}$ before ULX, and 6, 24, 48, 72 hours, and 1 week after ULX under pentobarbital sodium anesthesia (30 mg/kg, i.p.). Gain (spikes/s/deg/s) and phase (in degrees) were determined from the neuronal activity induced by sinusoidal head rotation with 0.05, 0.1, 0.2, and 0.4 Hz. The mean resting activity before ULX was $16.7{\pm}8.6$ spikes/s in type I neurons $(n=67,\;M{\pm}SD)$ and $14.5{\pm}8.4$ spikes/s in type II neurons (n=43). The activities of ipsilateral type I and contralateral type II neurons to the lesion side decreased markedly till 24 hr post-op, and a significant difference between ipsilateral and contralateral type I neurons sustained till 24 hr post-op. The gain at 4 different frequencies of sinusoidal rotation was depressed in all neurons till 6 or 24 hr post-op and then increased with time. The rate of decrease in gain was more prominent in ipsilateral type I and contralateral type II neurons immediately after ULX. Although the gain of those neurons increased gradually after 24 hours, it remained below normal levels. The phase was significantly advanced in all neurons following ULX. These results suggest that a depression of activities in ipsilateral type I and contralateral type II neurons is closely related with the occurrence of vestibular symptoms and restoration of activities in those neurons ameliorates the vestibular symptoms.

  • PDF