• Title/Summary/Keyword: uniformly convergence

Search Result 208, Processing Time 0.029 seconds

The critical buckling load of reinforced nanocomposite porous plates

  • Guessas, Habib;Zidour, Mohamed;Meradjah, Mustapha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • By using the first order shear deformation plate theory (FSDT) in the present paper, the effect of porosity on the buckling behavior of carbon nanotube-reinforced composite porous plates has been investigated analytically. Two types of distributions of uniaxially aligned reinforcement material are utilized which uniformly (UD-CNT) and functionally graded (FG-CNT) of plates. The analytical equations of the model are derived and the exact solutions for critical buckling load of such type's plates are obtained. The convergence of the method is demonstrated and the present solutions are numerically validated by comparison with some available solutions in the literature. The central thesis studied and discussed in this paper is the Influence of Various parameters on the buckling of carbon nanotube-reinforced porous plate such as aspect ratios, volume fraction, types of reinforcement, the degree of porosity and plate thickness. On the question of porosity, this study found that there is a great influence of their variation on the critical buckling load. It is revealed that the critical buckling load decreases as increasing coefficients of porosity.

Morphology-Controlled WO3 and WS2 Nanocrystals for Improved Cycling Performance of Lithium Ion Batteries

  • Lim, Young Rok;Ko, Yunseok;Park, Jeunghee;Cho, Won Il;Lim, Soo A;Cha, EunHee
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.89-97
    • /
    • 2019
  • As a promising candidate for anode materials in lithium ion battery (LIB), tungsten trioxide ($WO_3$) and tungsten disulfide ($WS_2$) nanocrystals were synthesized, and their electrochemical properties were comprehensibly studied using a half cell. One-dimensional $WO_3$ nanowires with uniform diameter of 10 nm were synthesized by hydrothermal method, and two-dimensional (2D) $WS_2$ nanosheets by unique gas phase sulfurization of $WO_3$ using $H_2S$. $WS_2$ nanosheets exhibits uniformly 10 nm thickness. The $WO_3$ nanowires and $WS_2$ nanosheets showed maximum capacities of 552 and $633mA\;h\;g^{-1}$, respectively, after 100 cycles. Especially, the capacity of $WS_2$ is significantly larger than the theoretical capacity ($433mA\;h\;g^{-1}$). We also examined the cycling performance using a larger size $WO_3$ and $WS_2$ nanocrystals, showing that the smaller size plays an important role in enhancing the capacity of LIBs. The larger capacity of $WS_2$ nanosheets than the theoretical value is ascribed to the lower charge transfer resistance of 2D nanostructures.

A Study on the Development of High-Intensity Focused Ultrasound Skin Treatment System Through Frequency Output Control Optimization (주파수 출력 제어 최적화를 통한 고강도 집속 초음파 피부치료 시스템 개발 연구)

  • Park, Jong-Cheol;Kim, Min-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1022-1037
    • /
    • 2022
  • It is important to develop a transducer that generates uniform output power through frequency control of the HIFU at 4 MHz frequency for the high intensity focused ultrasound (HIFU) skin diseases treatment. In this paper, a 4 MHz frequency band HIFU system for skin disease treatment was designed, manufactured and developed. In HIFU, even for the ultrasonic vibrator in the 4 MHz frequency band, the characteristics of the output power of the HIFU are different depending on the difference in the thickness of the PZT material. Through the development of a system amplifier, the sound output of the HIFU transducer was improved to more than 48 W and uniform output power control was possible. And, it is possible to control the output power even in a frequency band of 4.0 to 4.7 MHz, which is wider than 4.0 MHz, and shows the resonance frequency of the transducer. The maximum output power for each frequency was 49.969 W and the minimum value was 48.018 W. The maximum output power compared to the minimum output power is 49.969 W, which is uniform within 4.1%. It was confirmed that the output power of the HIFU through the amplifier can be uniformly controlled in the 4 MHz frequency band.

Characteristics of 32 × 32 Photonic Quantum Ring Laser Array for Convergence Display Technology (디스플레이 융합 기술 개발을 위한 32 × 32 광양자테 레이저 어레이의 특성)

  • Lee, Jongpil;Kim, Moojin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.161-167
    • /
    • 2017
  • We have fabricated and characterized $32{\times}32$ photonic quantum ring (PQR) laser arrays uniformly operable with $0.98{\mu}A$ per ring at room temperature. The typical threshold current, threshold current density, and threshold voltage are 20 mA, $0.068A/cm^2$, and 1.38 V. The top surface emitting PQR array contains GaAs multiquantum well active regions and exhibits uniform characteristics for a chip of $1.65{\times}1.65mm^2$. The peak power wavelength is $858.8{\pm}0.35nm$, the relative intensity is $0.3{\pm}0.2$, and the linewidth is $0.2{\pm}0.07nm$. We also report the wavelength division multiplexing system experiment using angle-dependent blue shift characteristics of this laser array. This photonic quantum ring laser has angle-dependent multiple-wavelength radial emission characteristics over about 10 nm tuning range generated from array devices. The array exhibits a free space detection as far as 6 m with a function of the distance.

Investigation of Tensile Properties in Edge Modified Graphene Oxide(E-GO)/Epoxy Nano Composites (측면 치환 그래핀/에폭시 나노복합재료의 인장 특성 평가)

  • Donghyeon Lee;Ga In Cho;Hyung Mi Lim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.209-214
    • /
    • 2024
  • Graphene oxide (GO), known for its high stiffness, thermal conductivity, and electrical conductivity, is being utilized as a reinforcement in nanocomposite materials. This study evaluates the mechanical properties of epoxy nanocomposites incorporating GO and edge modified GO (E-GO), which has hydroxyl groups substituted only on its edges. GO/E-GO was uniformly dispersed in epoxy resin using ultrasonic dispersion, and mechanical properties were assessed through tensile testing. The results showed that the addition of nanoparticles increased both tensile strength and toughness. The tensile strength of the epoxy without nanoparticles was 74.4 MPa, while the highest tensile strength of 90.7 MPa was observed with 0.3 wt% E-GO. Additionally, the modulus increased from 2.55 GPa to 3.53 GPa with the addition of nanoparticles. Field emission scanning electron microscopy of the fracture surface revealed that the growth of cracks was impeded by the nanoparticles, preventing complete fracture and causing the cracks to split in multiple directions. E-GO, with surface treatment only on the edges, exhibited higher mechanical properties than GO due to its superior dispersion and surface treatment effects. These results highlight the importance of nanoparticle surface treatment in developing high-performance nanocomposite materials.

A Study on the Damage Degree of Hair Dye Treatments and the Impact of Heavy Metals (트리트먼트(Treatment)를 이용한 모발 염색이 손상도와 중금속 함량에 미치는 영향)

  • Lee, Tae-Sook;Kim, Younghee
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.551-557
    • /
    • 2017
  • Hair beauty treatments that can express individuality have increased and diversified. However, their repetitive use has also brought about hair damage. To reduce such damage, the importance of hair treatments when receiving chemotherapy has magnified greatly. In this study, the hair (normal hair, NH) of 5 people in their 20s has been collected and observed with SEM before dyeing (NH), after dyeing (DH) and after dyed and treated (DTH) to measure the hair's morphological damage and mineral content. SEM observation results revealed that, in DTH, a cuticle-like arrangement appears almost uniformly, the hair settles, the lines are smooth, and the damage degree is low. Regarding mineral content, the concentration of minerals was generally balanced. However, in the observation of toxic minerals and minerals found in large amounts, the concentration of Ba, Na, Ca, and Mg was higher than the balance range in NH, DH, and DTH.

An air flow resistance model for a pressure cooling system based on container stacking methods (차압예냉에서 청과물 상자의 적재방법에 따른 송풍저항 예측모델 개발)

  • Kim, Oui-Woung;Kim, Hoon;Han, Jae-Woong;Lee, Hyo-Jai
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.289-295
    • /
    • 2013
  • The capacity of a pressure fan can be designed based on the air flow resistance of containers packed with fruits and vegetables in a pressure cooling system. This study was conducted to develop an air flow resistance model that was dependent on changes in the air flow rate and the method of stacking containers. The air flow resistance of a container packed with uniformly shaped balls was 1.5 times greater than the sum of the air flow resistance of a vacant container and that of a wire net container packed with only balls. In addition, the air flow resistance increased exponentially as the width of the stacks increased; however, the air flow resistance did not increase greatly as the length and height of the stacks increased, which indicates that the air flow resistance is primarily influenced by the width of the stack in the air flow direction. The air flow resistance in two lines of stacking was up to 17% less than that of the width of the stack. It was also possible to determine the air flow resistance using a function of the air flow resistance through a single container and develop a prediction model. A prediction model of air flow resistance that is dependent on the stacking method and the air flow resistance of a single container was developed.

ISHIKAWA AND MANN ITERATIVE PROCESSES WITH ERRORS FOR NONLINEAR $\Phi$-STRONGLY QUASI-ACCRETIVE MAPPINGS IN NORMED LINEAR SPACES

  • Zhou, H.Y.;Cho, Y.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1061-1073
    • /
    • 1999
  • Let X be a real normed linear space. Let T : D(T) ⊂ X \longrightarrow X be a uniformly continuous and ∮-strongly quasi-accretive mapping. Let {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} be two real sequences in [0, 1] satisfying the following conditions: (ⅰ) ${\alpha}$n \longrightarrow0, ${\beta}$n \longrightarrow0, as n \longrightarrow$\infty$ (ⅱ) {{{{ SUM from { { n}=0} to inf }}}} ${\alpha}$=$\infty$. Set Sx=x-Tx for all x $\in$D(T). Assume that {u}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and {v}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} are two sequences in D(T) satisfying {{{{ SUM from { { n}=0} to inf }}}}∥un∥<$\infty$ and vn\longrightarrow0 as n\longrightarrow$\infty$. Suppose that, for any given x0$\in$X, the Ishikawa type iteration sequence {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} with errors defined by (IS)1 xn+1=(1-${\alpha}$n)xn+${\alpha}$nSyn+un, yn=(1-${\beta}$n)x+${\beta}$nSxn+vn for all n=0, 1, 2 … is well-defined. we prove that {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} converges strongly to the unique zero of T if and only if {Syn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} is bounded. Several related results deal with iterative approximations of fixed points of ∮-hemicontractions by the ishikawa iteration with errors in a normed linear space. Certain conditions on the iterative parameters {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and t are also given which guarantee the strong convergence of the iteration processes.

  • PDF

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

Numerical study of fluid behavior on protruding shapes within the inlet part of pressurized membrane module using computational fluid dynamics

  • Choi, Changkyoo;Lee, Chulmin;Park, No-Suk;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • This study analyzes the velocity and pressure incurred by protruding shapes installed within the inlet part of a pressurized membrane module during operation to determine the fluid flow distribution. In this paper, to find the flow distribution within a module, it investigates the velocity and pressure values at cross-sectional and outlet planes, and 9 sections classified on outlet plane using computational fluid dynamics. From the Reynolds number (Re), the fluid flow was estimated to be turbulent when the Re exceeded 4,000. In the vertical cross-sectional plane, shape 4 and 6 (round-type protrusion) showed the relatively high velocity of 0.535 m/s and 0.558 m/s, respectively, indicating a uniform flow distribution. From the velocity and pressure at the outlet, shape 4 also displayed a relatively uniform fluid velocity and pressure, indicating that fluid from the inlet rapidly and uniformly reached the outlet, however, from detailed data of velocity, pressure and flowrate obtained from 9 sections at the outlet, shape 6 revealed the low standard deviations for each section. Therefore, shape 6 was deemed to induce the ideal flow, since it maintained a uniform pressure, velocity and flowrate distribution.