• 제목/요약/키워드: uniformly continuous operator

검색결과 7건 처리시간 0.019초

ON FIXED POINT OF UNIFORMLY PSEUDO-CONTRACTIVE OPERATOR AND SOLUTION OF EQUATION WITH UNIFORMLY ACCRETIVE OPERATOR

  • Xu, Yuguang;Liu, Zeqing;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • 제24권3호
    • /
    • pp.305-315
    • /
    • 2008
  • The purpose of this paper is to study the existence and uniqueness of the fixed point of uniformly pseudo-contractive operator and the solution of equation with uniformly accretive operator, and to approximate the fixed point and the solution by the Mann iterative sequence in an arbitrary Banach space or an uniformly smooth Banach space respectively. The results presented in this paper show that if X is a real Banach space and A : X $\rightarrow$ X is an uniformly accretive operator and (I-A)X is bounded then A is a mapping onto X when A is continuous or $X^*$ is uniformly convex and A is demicontinuous. Consequently, the corresponding results which depend on the assumptions that the fixed point of operator and solution of the equation are in existence are improved.

  • PDF

CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권4호
    • /
    • pp.293-308
    • /
    • 2004
  • Let K be a nonempty convex subset of an arbitrary Banach space X and $T\;:\;K\;{\rightarrow}\;K$ be a uniformly continuous strictly hemi-contractive operator with bounded range. We prove that certain Ishikawa iteration scheme with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. We also establish similar convergence and almost stability results for strictly hemi-contractive operator $T\;:\;K\;{\rightarrow}\;K$, where K is a nonempty convex subset of arbitrary uniformly smooth Banach space X. The convergence results presented in this paper extend, improve and unify the corresponding results in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [3, 4, 5, 6, 7, 8], Chidume & Osilike [9, 10, 11, 12], Liu [19], Schu [25], Tan & Xu [26], Xu [28], Zhou [29], Zhou & Jia [30] and others.

  • PDF

SUBSTITUTION OPERATORS IN THE SPACES OF FUNCTIONS OF BOUNDED VARIATION BV2α(I)

  • Aziz, Wadie;Guerrero, Jose Atilio;Merentes, Nelson
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.649-659
    • /
    • 2015
  • The space $BV^2_{\alpha}(I)$ of all the real functions defined on interval $I=[a,b]{\subset}\mathbb{R}$, which are of bounded second ${\alpha}$-variation (in the sense De la Vall$\acute{e}$ Poussin) on I forms a Banach space. In this space we define an operator of substitution H generated by a function $h:I{\times}\mathbb{R}{\rightarrow}\mathbb{R}$, and prove, in particular, that if H maps $BV^2_{\alpha}(I)$ into itself and is globally Lipschitz or uniformly continuous, then h is an affine function with respect to the second variable.

Mann-Iteration process for the fixed point of strictly pseudocontractive mapping in some banach spaces

  • Park, Jong-An
    • 대한수학회지
    • /
    • 제31권3호
    • /
    • pp.333-337
    • /
    • 1994
  • Many authors[3][4][5] constructed and examined some processes for the fixed point of strictly pseudocontractive mapping in various Banach spaces. In fact the fixed point of strictly pseudocontractive mapping is the zero of strongly accretive operators. So the same processes are used for the both circumstances. Reich[3] proved that Mann-iteration precess can be applied to approximate the zero of strongly accretive operator in uniformly smooth Banach spaces. In the above paper he asked whether the fact can be extended to other Banach spaces the duals of which are not necessarily uniformly convex. Recently Schu[4] proved it for uniformly continuous strictly pseudocontractive mappings in smooth Banach spaces. In this paper we proved that Mann-iteration process can be applied to approximate the fixed point of strictly pseudocontractive mapping in certain Banach spaces.

  • PDF

ITERATIVE APPROXIMATION OF FIXED POINTS FOR φ-HEMICONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;An, Zhefu;Li, Yanjuan;Kang, Shin-Min
    • 대한수학회논문집
    • /
    • 제19권1호
    • /
    • pp.63-74
    • /
    • 2004
  • Suppose that X is a real Banach space, K is a nonempty closed convex subset of X and T : $K\;\rightarrow\;K$ is a uniformly continuous ${\phi}$-hemicontractive operator or a Lipschitz ${\phi}-hemicontractive$ operator. In this paper we prove that under certain conditions the three-step iteration methods with errors converge strongly to the unique fixed point of T. Our results extend the corresponding results of Chang [1], Chang et a1. [2], Chidume [3]-[7], Chidume and Osilike [9], Deng [10], Liu and Kang [13], [14], Osilike [15], [16] and Tan and Xu [17].

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권3호
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.

STRONG AND WEAK CONVERGENCE OF THE ISHIKAWA ITERATION METHOD FOR A CLASS OF NONLINEAR EQUATIONS

  • Osilike, M.O.
    • 대한수학회보
    • /
    • 제37권1호
    • /
    • pp.153-169
    • /
    • 2000
  • Let E be a real q-uniformly smooth Banach space which admits a weakly sequentially continuous duality map, and K a nonempty closed convex subset of E. Let T : K -> K be a mapping such that $F(T)\;=\;{x\;{\in}\;K\;:\;Tx\;=\;x}\;{\neq}\;0$ and (I - T) satisfies the accretive-type condition: $\;{\geq}\;{\lambda}$\mid$$\mid$x-Tx$\mid$$\mid$^2$, for all $x\;{\in}\;K,\;x^*\;{\in}\;F(T)$ and for some ${\lambda}\;>\;0$. The weak and strong convergence of the Ishikawa iteration method to a fixed point of T are investigated. An application of our results to the approximation of a solution of a certain linear operator equation is also given. Our results extend several important known results from the Mann iteration method to the Ishikawa iteration method. In particular, our results resolve in the affirmative an open problem posed by Naimpally and Singh (J. Math. Anal. Appl. 96 (1983), 437-446).

  • PDF