• Title/Summary/Keyword: uniform load

Search Result 642, Processing Time 0.021 seconds

A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

  • Han, Seunghak;Nam, Seokho;Lee, Jeyull;Song, Seunghyun;Jeon, Haeryong;Baek, Geonwoo;Kang, Hyoungku;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.44-48
    • /
    • 2017
  • Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

Sequential pattern load modeling and warning-system plan in modular falsework

  • Peng, Jui-Lin;Wu, Cheng-Lung;Chan, Siu-Lai
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.441-468
    • /
    • 2003
  • This paper investigates the structural behavior of modular falsework system under sequential pattern loads. Based on the studies of 25 construction sites, the pattern load sequence modeling is defined as models R (rectangle), L and U. The study focuses on the system critical loads, regions of largest reaction forces, discrepancy between the pattern load and the uniform load, and the warning-system plan. The analysis results show that the critical loads of modular falsework systems with sequential pattern loads are very close to those with the uniform load used in design. The regions of largest reaction forces are smaller than those calculated by the uniform load. However, the regions of largest reaction forces of three models under sequential pattern loads can be considered as the crucial positions of warning-system based on the measured index of loading. The positions of the sensors for the warning-system for these three different models are not identical.

A new SDOF method of one-way reinforced concrete slab under non-uniform blast loading

  • Wang, Wei;Zhang, Duo;Lu, Fangyun;Liu, Ruichao
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.595-613
    • /
    • 2013
  • A new effective model for calculation of the equivalent uniform blast load for non-uniform blast load such as close-in explosion of a one-way square and rectangle reinforced concrete slab is proposed in this paper. The model is then validated using single degree of freedom (SDOF) system with the experiments and blast tests for square slabs and rectangle slabs. Test results showed that the model is accurate in predicting the damage level on the tested RC slabs under the given explosive charge weight and stand-off distance especially for close-in blast load. The results are also compared with those obtained by conventional SDOF analysis and finite element (FE) analysis using solid elements. It is shown that the new model is more accurate than the conventional SDOF analysis and is running faster than the FE analysis.

Durability Study on Two-passenger Bicycle Frame under Non-uniform Fatigue Load (불규칙 피로하중을 받는 2인승용 자전거의 차대에 관한 내구성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.92-98
    • /
    • 2015
  • This study investigates the durability of a two-passenger bicycle frame under non-uniform fatigue load. The bicycle frame of Model 1 installed with reinforcement support has a 20% lower maximum equivalent stress than the existing Model 2. Model 1 has a maximum total deformation that is less than half that of Model 2. Model 1 has a higher maximum fatigue life than Model 2. In addition, Model 1 has lower fatigue damage than Model 2. Thus, the bicycle frame of Model 1 installed with reinforcement support can be described as safer, as it offers more strength than Model 2. Applying this result to the design of a real two-passenger bicycle frame under non-uniform fatigue load can effectively prevent fatigue damage and improve durability.

The Effect of Fiber Volume Fraction Non-uniformity through Thickness Direction on the Torsional Buckling Load of Cylindrical Composite Lattice Structure (두께방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 비틀림 좌굴 하중에 미치는 영향)

  • Min-Hyeok Jeon;Hyun-Jun Cho;Yeon-Ju Kim;Mi-Yeon Lee;In-Gul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.80-85
    • /
    • 2023
  • A cylindrical composite lattice structure is manufactured by filament winding. The distribution of nonuniform fiber volume fraction induced by the manufacturing process can be observed. The stiffness and buckling characteristics can be influenced by non-uniform fiber volume fraction. In this paper, the effect of non-uniform fiber volume fraction through thickness direction on the torsional buckling load of the cylindrical composite lattice structure was examined. The stiffness variation induced by the non-uniform fiber volume fraction was applied to the finite element model, and buckling analysis was performed. The variations of buckling load with variations of fiber volume fraction were compared. The non-uniform fiber volume fraction reduced the torsional buckling load of the composite lattice structure.

Analysis of Shell Structures Subjected to Deformation Dependent Pressure Load (변형종속 압력하중을 받는 셸구조물의 해석)

  • Jang, Myung-Ho;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.93-102
    • /
    • 2002
  • Pressure loads caused by gas, water and wind are the most important load cases in structural analysis. Often the pressure loads are approximated by constant directional loads since it is difficult to evaluate the exact value. However, the pressure load is defined as a displacement dependent one and it is necessary to consider the follower effects of the load in analysis procedure. In this study, the large deformation analysis considering geometrical nonlinearity for shell structures under pressure loads is presented. Finite element by using a three-node flat triangular shell element is formulated and the follower effects of the pressure load are included in the formulation. Some of results are presented for cantilevered beam under uniform external pressure and thin circular ring under non-uniform external pressure. The present results are in good agreement with the results available in existing literature and commercial software ABAQUS.

  • PDF

Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow (균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교)

  • Kim, Jin;Ryu, Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF

Thermal buckling and stability of laminated plates under non uniform temperature distribution

  • Widad Ibraheem Majeed;Ibtehal Abbas Sadiq
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.503-511
    • /
    • 2023
  • Stability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter "m", whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of temperature reduces plate frequency.

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.

A study on Characteristics of the Liquid Atomization by Ultrasonic (초음파에 의한 액체 미립화 특성에 관한 연구)

  • 주은선;나우정;최우창
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.31-39
    • /
    • 1999
  • A good atomization in uniform size brings the elevation of thermal efficiency in spray combustion, the beautiful painting on surfaces, and the economical sprinkling of chemicals. Ultrasonic atomization has been expected as a good uniform atomization mechanism due to its uniform size distribution. Influx, load, and physical properties of liquids are the effecting factors to atomize liquids. In this study, distilled water and city water are selected as reference liquids and gasoline, kerosene, and petroleum as fuel liquids. Characteristics and affinity to get the maximum effect for the ultrasonic atomization are observed by using the two ultrasonic transducers with 28kHz and 2MHz. Results show that the size distributions of liquid spray dorplet by the direct vibration method prevail over those by the aerosol method in uniform droplet size and as a whole, sizes of spray liquid droplets are increased slightly according to increasing influx in the direct vibration method and quantities of spray droplets in the aerosol method decreasing according to increasing liquid load h.

  • PDF