• Title/Summary/Keyword: uniform hazard curves

Search Result 5, Processing Time 0.017 seconds

Analysis of Uniform Hazard Spectra for Metropolises in the Korean Peninsula (국내 주요 광역 도시에 대한 등재해도 스펙트럼 분석)

  • Rhee, Hyun-Me;Kim, Min Kyu;Sheen, Dong-Hoon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2013
  • The uniform hazard spectra for seven major cities in Korea, Seoul, Daejeon, Daegu, Busan, Gwangju, Ulsan, and Inchon are suggested. Probabilistic seismic hazard analyses were performed using the attenuation equations derived from seismology research in Korea since 2000 and the seismotectonic models selected by expert assessment. For the estimation of the uniform hazard spectra, the seismic hazard curves for several frequencies and PGAs were calculated by using the spectral attenuation equations. The seismic hazards (annual exceedance probability) calculated for the 7 metropolises ranged from about $1.4305{\times}0^{-4}/yr$ to $1.7523{\times}10^{-4}/yr$ and averaged out at about $1.5902{\times}10^{-4}/yr$ with a log standard deviation of about 0.085 at 0.2 g. The uniform hazard spectra with recurrence intervals of 500, 1000, and 2500 years estimated by using the calculated mean seismic hazard on the frequencies presented peak values at 10.0 Hz, and the log standard deviations of the difference between metropolises ranged from about 0.013 to 0.209. In view of the insignificant difference between the estimated uniform hazard spectra obtained for the considered metropolises, the mean uniform hazard spectrum was estimated. This mean uniform hazard spectrum is expected to be used as input seismic response spectrum for rock sites in Korea.

Seismic hazard assessment for two cities in Eastern Iran

  • Farzampour, Alireza;Kamali-Asl, Arash
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.681-697
    • /
    • 2015
  • Iran as one of the countries located on the Alpine-Himalayan seismic belt has recently experienced a few number of catastrophic earthquakes. A well-known index of how buildings are affected by earthquakes is through assessment of probable Peak Ground Acceleration (PGA) and structures' response spectra. In this research, active faults around Kerman and Birjand, two major cities in eastern parts of Iran, have been considered. Seismic catalogues are gathered to categorize effects of surrounding faults on seismicity of the region. These catalogues were further refined with respect to time and space based on Knopoff-Gardner algorithm in order to increase statistical independency of events. Probabilistic Seismic Hazard Analysis (PSHA) has been estimated for each of cities regarding 50, 100, 200 and 500 years of structures' effective life-span. These results subsequently have been compared with Deterministic Seismic Hazard Analysis (DSHA). It has been observed that DSHA not necessarily suggests upper bound of PSHA results. Furthermore, based on spectral Ground Motion Prediction Equations (GMPEs), Uniform Hazard Spectra (UHS) and spectral acceleration were provided for 2% and 10% levels of probability of exceedance. The results show that increasing source-to-site distance leads to spectral acceleration reduction regarding each fault. In addition, the spectral acceleration rate of variation would increase if the source-to-site distance decreases.

Seismic Fragility Assessment of NPP Containment Structure based on Conditional Mean Spectra for Multiple Earthquake Scenarios (다중 지진 시나리오를 고려한 원전 격납구조물의 조건부 평균 스펙트럼 기반 지진취약도 평가)

  • Park, Won Ho;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.301-309
    • /
    • 2019
  • A methodology to assess seismic fragility of a nuclear power plant (NPP) using a conditional mean spectrum is proposed as an alternative to using a uniform hazard response spectrum. Rather than the single-scenario conditional mean spectrum, which is the conventional conditional mean spectrum based on a single scenario, a multi-scenario conditional mean spectrum is proposed for the case in which no single scenario is dominant. The multi-scenario conditional mean spectrum is defined as the weighted average of different conditional mean spectra, each one of which corresponds to an individual scenario. The weighting factors for scenarios are obtained from a deaggregation of seismic hazards. As a validation example, a seismic fragility assessment of an NPP containment structure is performed using a uniform hazard response spectrum and different single-scenario conditional mean spectra and multi-scenario conditional mean spectra. In the example, the number of scenarios primarily influences the median capacity of the evaluated structure. Meanwhile, the control frequency, a key parameter of a conditional mean spectrum, plays an important role in reducing logarithmic standard deviation of the corresponding fragility curves and corresponding high confidence of low probability of failure (HCLPF) capacity.

The effect of structural variability and local site conditions on building fragility functions

  • Sisi, Aida Azari;Erberik, Murat A.;Askan, Aysegul
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-295
    • /
    • 2018
  • In this study, the effect of local site conditions (site class and site amplifications) and structural variability are investigated on fragility functions of typical building structures. The study area is chosen as Eastern Turkey. The fragility functions are developed using site-specific uniform hazard spectrum (UHS). The site-specific UHS is obtained based on simulated ground motions. The implementation of ground motion simulation into seismic hazard assessment has the advantage of investigating detailed local site effects. The typical residential buildings in Erzincan are represented by equivalent single degree of freedom systems (ESDOFs). Predictive equations are accomplished for structural seismic demands of ESDOFs to derive fragility functions in a straightforward manner. To study the sensitivity of fragility curves to site class, two sites on soft and stiff soil are taken into account. Two alternative site amplification functions known as generic and theoretical site amplifications are examined for these two sites. The reinforced concrete frames located on soft soil display larger fragilities than those on stiff soil. Theoretical site amplification mostly leads to larger fragilities than generic site amplification more evidently for reinforced concrete buildings. Additionally, structural variability of ESDOFs is generally observed to increase the fragility especially for rigid structural models.

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.