• Title/Summary/Keyword: uniform grid

Search Result 207, Processing Time 0.026 seconds

Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ) (진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ))

  • Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

Reduction in Sample Size for Efficient Monte Carlo Localization (효율적인 몬테카를로 위치추정을 위한 샘플 수의 감소)

  • Yang Ju-Ho;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.450-456
    • /
    • 2006
  • Monte Carlo localization is known to be one of the most reliable methods for pose estimation of a mobile robot. Although MCL is capable of estimating the robot pose even for a completely unknown initial pose in the known environment, it takes considerable time to give an initial pose estimate because the number of random samples is usually very large especially for a large-scale environment. For practical implementation of MCL, therefore, a reduction in sample size is desirable. This paper presents a novel approach to reducing the number of samples used in the particle filter for efficient implementation of MCL. To this end, the topological information generated through the thinning technique, which is commonly used in image processing, is employed. The global topological map is first created from the given grid map for the environment. The robot then scans the local environment using a laser rangefinder and generates a local topological map. The robot then navigates only on this local topological edge, which is likely to be similar to the one obtained off-line from the given grid map. Random samples are drawn near the topological edge instead of being taken with uniform distribution all over the environment, since the robot traverses along the edge. Experimental results using the proposed method show that the number of samples can be reduced considerably, and the time required for robot pose estimation can also be substantially decreased without adverse effects on the performance of MCL.

Analysis of the Stepped-Impedance Low Pass Filter using Sub-Gridding Finite-Difference Time-Domain Method (서브 그리딩 유한 차분 시간 영역법을 이용한 계단형 임피던스 저역 통과 필터 해석)

  • 노범석;최재훈;이상선;정제명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.217-224
    • /
    • 2002
  • One of the dominant aspects governing the accuracy of the FDTD method is the size of the spatial increment used in the model. The effect of having reduced cell size is to increase the computational time and memory requirements. To overcome these problems, sub-gridding technique can be used. This implies that the application of a sub-grid cell would provide improved accuracy without increasing the run time and computer resources considerably. In this paper, we describe the three dimensional sub-gridding technique that is applied to model only the fine structure region of interest. The detailed solution procedure is described and some test geometries were solved by both uniform grid and sub-grid models to validate the suggested approach. While keeping the accuracy, the computational time becomes 6 times faster and the memory requirement is reduced by a factor of 2.5 comparing to the conventional FDTD approach.

Verification of multilevel octree grid algorithm of SN transport calculation with the Balakovo-3 VVER-1000 neutron dosimetry benchmark

  • Cong Liu;Bin Zhang;Junxia Wei;Shuang Tan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.756-768
    • /
    • 2023
  • Neutron transport calculations are extremely challenging due to the high computational cost of large and complex problems. A multilevel octree grid algorithm (MLTG) of discrete ordinates method was developed to improve the modeling accuracy and simulation efficiency on 3-D Cartesian grids. The Balakovo-3 VVER-1000 neutron dosimetry benchmark is calculated to verify and validate this numerical technique. A simplified S2 synthetic acceleration is used in the MLTG calculation method to improve the convergence of the source iterations. For the triangularly arranged fuel pins, we adopt a source projection algorithm to generate pin-by-pin source distributions of hexagonal assemblies. MLTG provides accurate geometric modeling and flexible fixed source description at a lower cost than traditional Cartesian grids. The total number of meshes is reduced to 1.9 million from the initial 9.5 million for the Balakovo-3 model. The numerical comparisons show that the MLTG results are in satisfactory agreement with the conventional SN method and experimental data, within the root-mean-square errors of about 4% and 10%, respectively. Compared to uniform fine meshing, approximately 70% of the computational cost can be saved using the MLTG algorithm for the Balakovo-3 computational model.

Generation of Non-uniform Meshes for Finite-Difference Time-Domain Simulations

  • Kim, Hyeong-Seok;Ihm, In-Sung;Choi, Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.128-132
    • /
    • 2011
  • In this paper, two automatic mesh generation algorithms are presented. The methods seek to optimize mesh density with regard to geometries exhibiting both fine and coarse physical structures. When generating meshes, the algorithms attempt to satisfy the conditions on the maximum mesh spacing and the maximum grading ratio simultaneously. Both algorithms successfully produce non-uniform meshes that satisfy the requirements for finite-difference time-domain simulations of microwave components. Additionally, an algorithm successfully generates a minimum number of grid points while maintaining the simulation accuracy.

DGNP : Dynamic Grid Naming Protocol for High Performance Computing (DGNP : 고성능 계산을 위한 동적 그리드 이름 프로토콜)

  • 권오경;박형우;이상산
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.61-63
    • /
    • 2003
  • 인터넷 기반의 컴퓨팅 환경이 발전함에 따라 자원과 정보의 공유를 위한 그리드 컴퓨팅이 나타나게 되었다. 그리드 컴퓨팅에서는 그리드 응용 수행시 프로그램과 데이터간의 위치가 다르고 분산되어 있는 경우가 많다. 현재 그리드 미들웨어 시장 표준인 글로버스 둘킷(Globus Toolkit$_{TM}$)에서 사용하는 GASS(Global Access to Secondary Storage)는 원격에 있는 관련 데이터들을 로컬 시스템의 데이터에 접근하는 것처럼 처리하는 것을 지원한다. GASS에서는 원격지의 파일 시스템의 접근시 URL(Uniform Resource Locator)을 이용하는데, 그리드 환경에서의 I/O을 위한 파일 시스템은 복수의 파일 형태로 분산되어있기 때문에 하나의 그리드 응용을 수행할 때 URL을 동적으로 바꿔야 하는 문제점을 갖고 있다. 위치에 상관 없고 고성능을 지향하고 데이터의 성격을 쉽게 표현할 수 있는 이름 체제가 필요하다. 그래서 본 연구는 동적이고 다양한 표현이 가능한 URI(Uniform Resource Identifiers)을 사용하여 그리드 상에서 데이터를 사용하는 방법을 제안하고자 한다.

  • PDF

Radio Propagation Measurementsand Path Loss Formulas for Microcellular Systems

  • Har, Dong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4A
    • /
    • pp.238-246
    • /
    • 2003
  • In this paper, we will provide a comprehensive review of radio propagation measurements conducted to date for mobile radio systems at frequency bands used for cellular and personal communications services in microcellular systems. Path-loss results were measured by using narrowband signal and multipath propagations were characterized by wideband measurements. This paper includes unpublished empirical path loss formulas for Oakland city of non-uniform building heights, and presents a comparison with path loss formulas obtained from typical low-rise building environments in order to discuss street grid dependence on route-specific building profile. We will also compare some empirical models developed based on the measurements with a few well-established theoretical prodiction models.

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.