• 제목/요약/키워드: uniform elongation

검색결과 91건 처리시간 0.216초

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • 제26권12호
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

EFFECT OF FLASHING AND UPSETTING PARAMETERS ON THE FLASH BUTT WELDING OF HIGH STRENGTH STEEL

  • Kim, Young-Sub;Kang, Moon-Jin
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.384-389
    • /
    • 2002
  • This study was aimed to evaluate the weldability and optimize the welding conditions for flash butt welding of 780MPa grade steel applied to the automotive bumper reinforcement. And then the relationship between the welding conditions and the joint performance relating specifically to coil-joining steel would be established. The effect of welding conditions between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with $C_{eq}$ of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2$ $O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non-uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

A Study on the Forming Characteristic of Inner Pyramid Structure Bonded Sheet Metal (피라미드형 내부구조재를 가지는 중공형 접합판재의 성형특성에 관한 연구)

  • Kim, J.Y.;Kil, H.Y.;Cho, G.C.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.295-299
    • /
    • 2006
  • The inner-structure bonded(ISB) sheet metal is defined as a composite sheet metal which has middle layer of truss-structure between two skin sheets. The characteristics such as ultra-light weight, high rigidity, high strength, etc are required especially for automobile parts. The characteristic of ISB sheet metal depends on inner-structure pattern or method of bonding. Pyramid type of crimped expanded metal is used for inner-structure and both of resistance welding and adhesive bonding are applied to make a specimen. As a result of compression test, it is appeared that forming limit is 10% reduction in thickness under a load of 8kgf per unit element(one inner-structure). In case of uniaxial tensile test the non-uniform surface integrity rather than the buckling of inner-structure happened at a load of 450kgf, which indicates elongation of 7.2% and thickness reduction of 13%. The eye-inspection method was applied to examine the defects occurring on the specimen during stretch forming. In case of biaxial stretch forming only the non-uniform deformation on the surface of a skin sheet could be observed. The forming limit in stretching of ISB sheet metal with the hemi-spherical punch of 150mm in diameter was 3mm in forming depth and 5% reduction in thickness.

  • PDF

Effect of Repair Width on Mechanical Properties of 630 Stainless Steel Repaired by Direct Energy Deposition Process (직접 에너지 적층 공정을 이용한 보수 공정에서 보수 폭에 따른 기계적 특성 관찰)

  • Oh, Wook-Jin;Shin, Gwang-Yong;Son, Yong;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권3호
    • /
    • pp.42-50
    • /
    • 2020
  • This study explores the effects of repair width on the deposition characteristics and mechanical properties of stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we changed the width of the pre-machined zone for repair in order to prevent cracks from occurring at the inclined surface. As a result of the experiment, cracks of 10-40 ㎛ in length were formed along the inclined slope regardless of the repair width. Yield and tensile strength decreased slightly as the repair width increased, but the total and uniform elongation increased. This is due to the orientation of the crack. For specimens with a repair width of 20 mm, yield and tensile strength were 883 MPa and 1135 MPa, respectively. Total and uniform elongations were 14.3% and 8.2%, respectively. During observation of the fracture specimens, we noted that the fracture of the specimen with an 8 mm repair width occurred along the slope, whereas specimens with 14 mm and 20 mm repair depths fractured at the middle of the repaired region. In conclusion, we found that tensile properties were dependent upon the repair width and the inclination of the crack occurred at the interface.

The Evaluation of the Creep Properties of ZIRLO Cladding Using the Ring Specimen (링 시험편을 이용한 ZIRLO 피복관의 크리프 특성 평가)

  • Bae, Bong-Kook;Koo, Jae-Mean;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.279-284
    • /
    • 2004
  • In this study, we suggested the ring creep test using the ring specimen of Arsene for estimating the burst creep properties of the cladding in stead of burst creep test. For this objective, we used the load-displacement conversion relationship of ring specimen called LCRR which had been determined on our previous study at high temperature by performing the ring tensile test and the numerical analysis. Then we carried out both the ring creep test and the burst creep test between 350 $^{\circ}C$ and 600$^{\circ}C$ which were higher then the in-service temperature of the cladding in a reactor. The creep properties from the ring creep test with applying LCRR were compared with those from the burst creep test of closed-end specimens. From the results, it could be seen an very strong relationship between them, especially in Larson- Miller parameter. So, it is expected that we can easily anticipate the creep properties of not only claddings but also various small pressure pipes using the ring creep test.

  • PDF

Development of Technique to Improve the Formability of the Rear Floor in Series Stamping Process (연속 스탬핑 작업시 리어 플로어 성형성 향상기술 개발)

  • Kim, Dong-Hwan;Lee, Jung-Min;Go, Young-Ho;Cha, Hae-Gue;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권9호
    • /
    • pp.41-48
    • /
    • 2005
  • In this study, to improve the formability of the rear floor in series stamping process, the method for predicting the temperature of tools and steel sheet is proposed using FE analysis. To do this, tensile tests and straight pulling friction tests of three steel sheets are carried out at temperatures up to $300^{\circ}C$, and the effect of temperature on the tensile properties and the characteristics of friction are examined. The steel sheets have a higher n-value in the temperature range of about $50^{\circ}C$, and it is related to the maximum uniform elongation. Also, the blue shortness occurs in the temperature range of about $150^{\circ}C$. When the temperature is higher than $200^{\circ}C$, the friction coefficient increase with increasing temperature. From the FE-simulation, the effects of the punch temperature considering heat expansion in the number of stamping are examined and discussed. The technique developed in this study fur estimating tool temperature can be used to develop more feasible ways to improve continuous productivity in series stamping process.

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • 제23권8호
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Rolling of AZ31 Alloy and Microstructure of Rolled Plates (압연조건에 따른 AZ31 마그네슘합금판재의 변형거동 및 미세조직 변화)

  • Ha, T.K.;Jeong, H.T.;Sung, H.J.;Park, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2006
  • The effect of warm rolling under various conditions on the microstructure and mechanical property was investigated using an AZ31 Mg alloy sheet. Several processing parameters such as initial thickness, thickness reduction by a single pass rolling, rolling temperature, roll speed, and roll temperature were varied to elicit an optimum condition for the warm rolling process of AZ31 Mg alloy. Microstructure and mechanical properties were measured for specimens subjected to rolling experiments of various conditions. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as $200^{\circ}C$ under the roll speed of 30 m/min. The initial microstructure before rolling was the mixed one consisting of partially recrystallized and cast structures. Grain refinement was found to occur actively during the warm rolling, producing a very fine grain size of 7 mm after 50% reduction in single pass rolling at $200^{\circ}C$. Yield strength of 204MPa, tensile strength of 330MPa and uniform elongation of 32% have been obtained in warm rolled sheets.

  • PDF

Effect of Hot Forging Ratio on the Mechanical Properties in Incoloy 825 Alloy (Incoloy 825 합금의 기계적 성질에 미치는 열간단조비의 영향)

  • Park, Y.T.;Jeong, Y.H.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제29권6호
    • /
    • pp.259-263
    • /
    • 2016
  • This study was carried out to investigate the effect of hot forging ratio on the microstructure and mechanical properties of incoloy 825 alloy. Hot forging was carried out at the forging ratio of 0%, 60% and 90% respectively in a range of $900^{\circ}C{\sim}1,140^{\circ}C$ and followed solution treatment was conducted at $1,000^{\circ}C$ for 1 hr. In all the specimens of hot forged of 0%, 60% and 90%, precipitates were not observed. The average grain size of 0% specimen is $82{\mu}m$ and that of 60% and 90% is $56{\mu}m$ and $31{\mu}m$, respectively. The range of grain size in the 0% specimen is uneven in $182{\mu}m$ to $31{\mu}m$, but the grain size of 90% specimen is uniform. With increasing hot forging ratio, the mechanical properties such as tensile strength, elongation, hardness increased and impact toughness increased by grain refinement.

Thermal Elastic-Plastic Analysis of Strength Considering Temperature Rise due to Plastic Deformation by Dynamic Leading in Welded Joint (동적하중하에서의 용접이음부의 강도적특성에 대한 온도상승을 고려한 열탄소성 해석)

  • 안규백;망월정인;대전흉;방한서;농전정남
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.68-77
    • /
    • 2003
  • It is important to understand the characteristics of material strength and fracture under the dynamic loading like as earthquakes to assure the integrity of welded structures. The characteristics of dynamic strength and fracture in structural steels and their welded joints should be evaluated based on the effects of the strain rate and the service temperature. It is difficult to predict or measure temperature rise history with the corresponding stress-strain behavior. In particular, material behaviors beyond the uniform elongation can not be precisely evaluated, though the behavior at large strain region after the maximum loading point is much important for the evaluation of fracture. In this paper, the coupling phenomena of temperature and stress-strain fields under the dynamic loading was simulated by using the finite element method. The modified rate-temperature parameter was defined by accounting for the effect of temperature rise under the dynamic deformation, and it was applied to the fully-coupled analysis between heat conduction and thermal elastic-plastic behavior. Temperature rise and stress-strain behavior including complicated phenomena were studies after the maximum loading point in structural steels and their undermatched joints and compared with the measured values.