• Title/Summary/Keyword: uniform column

Search Result 104, Processing Time 0.022 seconds

Microstructure Characterization of Cu Thin Films : Effects of Sputter Deposition Conditions (스퍼터 증착조건에 따른 구리박막의 미세구조 분석)

  • Joh, Cheol-Ho;Jung, Jin-Goo;Kim, Young-Ho
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.265-274
    • /
    • 1999
  • The microstructure of Cu thin films in various deposition conditions was characterized. Cr films (50 nm thick) and Cu films (500 or 1000 nm thick) were deposited on polyimide films by DC magnetron sputtering. The Ar pressure during Cu deposition was controlled to 5, 50 and 100 mtorr. The microstructure was characterized using conventional and high resolution SEM and TEM. As sputtering pressure increases, open boundaries are observed more frequently. The Cu film deposited at 5 mtorr has a dense and uniform structure, while low-density regions or open boundaries between columns exist in the film deposited at higher pressure. As the film grows thicker, open boundaries are wider and the density of open boundaries are higher. The comparison between SEM and TEM show that the small features shown in high resolution SEM are grains. High resolution SEM is very effective to characterize the microstructure of the thin films. One column in the films deposited at 50 and 100 mtorr consists of several grains, which are smaller than those deposited at 5 mtorr.

  • PDF

Structural Analysis of Two-dimensional Continuum by Finite Element Method (유한요소법에 의한 이차원연속체의 구조해석)

  • 이재영;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.2
    • /
    • pp.83-100
    • /
    • 1980
  • This study was intended to computerize the structural analysis of two-dimensional continuum by finite element method, and to provide a preparatory basis for more sophisticated and more generalized computer programs of this kind. A computer program, applicable to any shape of two-dimensional continuum, was formulated on the basis of 16-degree-of- freedom rectangular element. Various computational aspects pertaining to the implementation of finite element method were reviewed and settled in the course of programming. The validity of the program was checked through several case studies. To assess the accuracy and the convergence characteristics of the method, the results computed by the program were compared with solutions by other methods, namely the analytical Navier's method and the framework method. Through actual programming and analysis of the computed results, the following facts were recognized; 1) The stiffness matrix should necessarily be assembled in a condensed form in order to make it possible to discretize the continuum into practically adequate number of elements without using back-up storage. 2) For minimization of solution time, in-core solution of the equilibrium equation is essential. LDLT decomposition is recommended for stiffness matrices condensed by the compacted column storage scheme. 3) As for rectangular plates, the finite element method shows better performances both in the accuracy and in the rate of convergence than the framework method. As the number of elements increases, the error of the finite element method approaches around 1%. 4) Regardless of the structural shape, there is a uniform tendency in convergence characteristics dependent on the shape of element. Square elements show the best performance. 5) The accuracy of computation is independent of the interpolation function selected.

  • PDF

New optimum distribution of lateral strength of shear-type buildings for uniform damage

  • Donaire-Avila, Jesus;Lucchini, Andrea;Benavent-Climent, Amadeo;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.279-291
    • /
    • 2020
  • The seismic design of conventional frame structures is meant to enhance plastic deformations at beam ends and prevent yielding in columns. To this end, columns are made stronger than beams. Yet yielding in columns cannot be avoided with the column-to-beam strength ratios (about 1.3) prescribed by seismic codes. Preventing plastic deformations in columns calls for ratios close to 4, which is not feasible for economic reasons. Furthermore, material properties and the rearrangement of geometric shapes inevitably make the distribution of damage among stories uneven. Damage in the i-th story can be characterized as the accumulated plastic strain energy (Wpi) normalized by the product of the story shear force (Qyi) and drift (δyi) at yielding. Past studies showed that the distribution of the plastic strain energy dissipation demand, Wpi/ΣWpj, can be evaluated from the deviation of Qyi with respect to an "optimum value" that would make the ratio Wpi/(Qyiδyi) -i.e. the damage- equal in all stories. This paper investigates how the soil type and ductility demand affect the optimum lateral strength distribution. New optimum lateral strength distributions are put forth and compared with others proposed in the literature.

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

Comparison of the seismic performance of Reinforced Concrete-Steel (RCS) frames with steel and reinforced concrete moment frames in low, mid, and high-rise structures

  • Jalal Ghezeljeh;Seyed Rasoul Mirghaderi;Sina Kavei
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.249-263
    • /
    • 2024
  • This article presents a comparative analysis of seismic behavior in steel-beam reinforced concrete column (RCS) frames versus steel and reinforced concrete frames. The study evaluates the seismic response and collapse behavior of RCS frames of varying heights through nonlinear modeling. RCS, steel, and reinforced concrete special moment frames are considered in three height categories: 5, 10, and 20 stories. Two-dimensional frames are extracted from the three-dimensional structures, and nonlinear static analyses are conducted in the OpenSEES software to evaluate seismic response in post-yield regions. Incremental dynamic analysis is then performed on models, and collapse conditions are compared using fragility curves. Research findings indicate that the seismic intensity index in steel frames is 1.35 times greater than in RCS frames and 1.14 times greater than in reinforced concrete frames. As the number of stories increases, RCS frames exhibit more favorable collapse behavior compared to reinforced concrete frames. RCS frames demonstrate stable behavior and maintain capacity at high displacement levels, with uniform drift curves and lower damage levels compared to steel and reinforced concrete frames. Steel frames show superior strength and ductility, particularly in taller structures. RCS frames outperform reinforced concrete frames, displaying improved collapse behavior and higher capacity. Incremental Dynamic Analysis results confirm satisfactory collapse capacity for RCS frames. Steel frames collapse at higher intensity levels but perform better overall. RCS frames have a higher collapse capacity than reinforced concrete frames. Fragility curves show a lower likelihood of collapse for steel structures, while RCS frames perform better with an increase in the number of stories.

Experimental and numerical study on the earth pressure coefficient in a vertical backfilled opening

  • Jian Zheng;Li Li
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • Determining lateral earth pressure coefficient (EPC) K is a classic problem in geotechnical engineering. It is a key parameter for estimating the stresses in backfilled openings. For backfilled openings with rigid and immobile walls, some suggested using the Jaky's at-rest earth pressure coefficient K0 while other suggested taking the Rankine's active earth pressure coefficient Ka. A single value was proposed for the entire backfilled opening. To better understand the distributions of stresses and K in a backfilled opening, a series of laboratory tests have been conducted. The horizontal and vertical normal stresses at the center and near the wall of the opening were measured. The values of K at the center and near the wall were then calculated with the measured horizontal and vertical normal stresses. The results show that the values of K are close to Ka at the center and close to K0 near the wall. Furthermore, the experimental results show that the horizontal stress is almost the same at the center and near the wall, indicating a uniform distribution from the center to the wall. It can be estimated by analytical solutions using either Ka or K0. The vertical stress is higher near the center than near the wall. Its analytical estimation can only be done by using Ka at the center and K0 near the wall. Finally, the test results were used to calibrate a numerical model of FLAC2D, which was then used to analyze the influence of column size on the stresses and K in the backfilled opening.

Comparison of Lentinula edodes Growth Characteristics According to the Amount of Paper Mulberry Sawdust Added (닥나무 톱밥 첨가량에 따른 표고 생육특성 비교)

  • Jeong, Yeun Sug;Jang, Yeongseon;Ryoo, Rhim;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.325-331
    • /
    • 2018
  • We aimed to increase the utility of Broussonetia kazinoki (paper mulberry) by using its woody parts as a substrate for Lentinula edodes cultivation. Using different mixing ratios of paper mulberry and oak tree sawdust, five types of column-type media were prepared (1.2 kg each). Two L. edodes strains (NIFoS 2462 and NIFoS 2778) were used in this study. In the first flush, numerous small mushrooms were harvested because the fruited mushrooms were densely packed on the small media. The highest productivity was obtained with a 3:1 mixture of paper mulberry and oak tree sawdust (Q. acutissima:Q. mongolica, 1:1). In particular, for NIFoS 2462, the proportion of paper mulberry in the medium positively correlated with productivity. The size of NIFoS 2778 was uniform in all media tested. By contrast, the mushroom weight of NIFoS 2462 decreased, but the other characteristics were not significantly affected. Collectively, these findings suggest that B. kazinoki sawdust could be used to grow shiitake mushrooms and that some oak sawdust substitution is also possible. Our results could increase the utility of discarded by-products, such as sawdust.

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

Vane Shear Test on Nakdong River Sand (베인 전단시험기를 이용한 낙동강모래의 마찰각에 관한 연구)

  • Park, Sung-Sik;Zhou, An;Kim, Dong-Rak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.463-470
    • /
    • 2016
  • A vane shear test (VST) is a simple testing method for determining an undrained shear strength of cohesive soils by minimizing soil disturbance. In this study, the VST was used to determine a shear strength of sand. Dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5 cm in diameter and 10 cm in height) was rotated and a torque was measured within sand. When a torque moment by vane and friction resistance moment by sand is assumed to be equalized, a friction angle can be obtained. When a vane rotates within clay, a uniform undrained shear strength is assumed to be acting on cylindrical failure surface. On the other hand, when it is applied for sand, the failure shape can be assumed to be an octagonal or square column. The relationship between measured torque and resistant force along assumed failure shapes due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. For the same soil condition, a series of direct shear test was carried out and compared with VST result. The friction angle from VST was between 24-42 degrees for loose sand and 33-53 degrees for dense sand. This is similar to those of direct shear tests.

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.