• Title/Summary/Keyword: unified classifier

Search Result 9, Processing Time 0.03 seconds

Design of High-Performance Unified Circuit for Linear and Non-Linear SVM Classifications

  • Kim, Soo-Jin;Lee, Seon-Young;Cho, Kyeong-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • This paper describes the design of a high-performance unified SVM classifier circuit. The proposed circuit supports both linear and non-linear SVM classifications. In order to ensure efficient classification, a 48x96 or 64x64 sliding window with 20 window strides is used. We reduced the circuit size by sharing most of the resources required for both types of classification. We described the proposed unified SVM classifier circuit using the Verilog HDL and synthesized the gate-level circuit using 65nm standard cell library. The synthesized circuit consists of 661,261 gates, operates at the maximum operating frequency of 152 MHz and processes up to 33.8 640x480 image frames per second.

Adaptive TCX Windowing Technology for Unified Structure MPEG-D USAC

  • Lee, Tae-Jin;Beack, Seung-Kwon;Kang, Kyeong-Ok;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.474-477
    • /
    • 2012
  • The MPEG-D unified speech and audio coding (USAC) standardization process was initiated by MPEG to develop an audio codec that is able to provide consistent quality for mixed speech and music contents. The current USAC reference model structure consists of frequency domain (FD) and linear prediction domain (LPD) core modules and is controlled using a signal classifier tool. In this letter, we propose an LPD single-mode USAC structure using an adaptive widowing-based transform-coded excitation module. We tested our system using official test items for all mono-evaluation modes. The results of the experiment show that the objective and subjective performances of the proposed single-mode USAC system are better than those of the FD/LPD dual-mode USAC system.

Implementation of Pedestrian Detection and Tracking with GPU at Night-time (GPU를 이용한 야간 보행자 검출과 추적 시스템 구현)

  • Choi, Beom-Joon;Yoon, Byung-Woo;Song, Jong-Kwan;Park, Jangsik
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.421-429
    • /
    • 2015
  • This paper is about an approach for pedestrian detection and tracking with infrared imagery. We used the CUDA(Computer Unified Device Architecture) that is a parallel processing language in order to improve the speed of video-based pedestrian detection and tracking. The detection phase is performed by Adaboost algorithm based on Haar-like features. Adaboost classifier is trained with datasets generated from infrared images. After detecting the pedestrian with the Adaboost classifier, we proposed a particle filter tracking strategies on HSV histogram feature that exploit adaptively at the same time. The proposed approach is implemented on an NVIDIA Jetson TK1 developer board that is full-featured device ideal for software development within the Linux environment. In this paper, we presented the results of parallel processing with the NVIDIA GPU on the CUDA development environment for detection and tracking of pedestrians. We compared the object detection and tracking processing time for night-time images on both GPU and CPU. The result showed that the detection and tracking speed of the pedestrian with GPU is approximately 6 times faster than that for CPU.

Pose and Expression Invariant Alignment based Multi-View 3D Face Recognition

  • Ratyal, Naeem;Taj, Imtiaz;Bajwa, Usama;Sajid, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4903-4929
    • /
    • 2018
  • In this study, a fully automatic pose and expression invariant 3D face alignment algorithm is proposed to handle frontal and profile face images which is based on a two pass course to fine alignment strategy. The first pass of the algorithm coarsely aligns the face images to an intrinsic coordinate system (ICS) through a single 3D rotation and the second pass aligns them at fine level using a minimum nose tip-scanner distance (MNSD) approach. For facial recognition, multi-view faces are synthesized to exploit real 3D information and test the efficacy of the proposed system. Due to optimal separating hyper plane (OSH), Support Vector Machine (SVM) is employed in multi-view face verification (FV) task. In addition, a multi stage unified classifier based face identification (FI) algorithm is employed which combines results from seven base classifiers, two parallel face recognition algorithms and an exponential rank combiner, all in a hierarchical manner. The performance figures of the proposed methodology are corroborated by extensive experiments performed on four benchmark datasets: GavabDB, Bosphorus, UMB-DB and FRGC v2.0. Results show mark improvement in alignment accuracy and recognition rates. Moreover, a computational complexity analysis has been carried out for the proposed algorithm which reveals its superiority in terms of computational efficiency as well.

Research on Open Source Encoding Technology for MPEG Unified Speech and Audio Coding (MPEG 통합 음성/오디오 코덱을 위한 오픈 소스 부호화 기술에 관한 연구)

  • Song, Jeongook;Lee, Joonil;Kang, Hong-Goo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.86-96
    • /
    • 2013
  • Unified Speech and Audio Coding (USAC) is the speech/audio codec with the best quality, approved on Final Draft International Standard (FDIS) at MPEG meeting in 2011. Since MPEG conventionally standardizes only the decoder, it is not easy to study on the encoder technologies. Furthermore, Reference Model(RM) shows extremely poor performance. To solve these problems, the open source project(JAME) proposes the methods to make the improved performance of main encoder technologies in USAC. Especially, this paper introduces the encoder modules: the signal classifier for selective operation between two coders, the psychoacoustic model in frequency domain, and window transition technology. Finally, the results of verification test for FDIS and the performance of Common Encoder are appended.

Unified Detection and Tracking of Humans Using Gaussian Particle Swarm Optimization (가우시안 입자 군집 최적화를 이용한 사람의 통합된 검출 및 추적)

  • An, Sung-Tae;Kim, Jeong-Jung;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.353-358
    • /
    • 2012
  • Human detection is a challenging task in many fields because it is difficult to detect humans due to their variable appearance and posture. Furthermore, it is also hard to track the detected human because of their dynamic and unpredictable behavior. The evaluation speed of method is also important as well as its accuracy. In this paper, we propose unified detection and tracking method for humans using Gaussian-PSO (Gaussian Particle Swarm Optimization) with the HOG (Histograms of Oriented Gradients) features to achieve a fast and accurate performance. Keeping the robustness of HOG features on human detection, we raise the process speed in detection and tracking so that it can be used for real-time applications. These advantages are given by a simple process which needs just one linear-SVM classifier with HOG features and Gaussian-PSO procedure for the both of detection and tracking.

A Three Steps Data Reduction Model for Healthcare Systems (헬스케어 시스템을 위한 세단계 데이터 축소 모델)

  • Ali, Rahman;Lee, Sungyoung;Chung, Tae Choong
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.474-475
    • /
    • 2013
  • In healthcare systems, the accuracy of a classifier for classifying medical diseases depends on a reduced dataset. Key to achieve true classification results is the reduction of data to a set of optimal number of significant features. The initial step towards data reduction is the integration of heterogeneous data sources to a unified reduced dataset which is further reduced by considering the range of values of all the attributes and then finally filtering and dropping out the least significant features from the dataset. This paper proposes a three step data reduction model which plays a vital role in the classification process.

Text Extraction Algorithm in Natural Image using LoG Operator and Coiflet Wavelet (Coiflet Wavelet과 LoG 연산자를 이용한 자연이미지에서의 텍스트 검출 알고리즘)

  • Shin, Seong;Baek, Young-Hyun;Moon, Sung-Ryong;Shin, Hong-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.979-982
    • /
    • 2005
  • This paper is to be pre-processing that decides the text recognizability and quality contained in natural image. Differentiated with the existing studies, In this paper, it suggests the application of partially unified color models, Coiflet Wavelet and text extraction algorithm that uses the closed curve edge features of LoG (laplacian of gaussian)operator. The text image included in natural image such as signboard has the same hue, saturation and value, and there is a certain thickness as for their feature. Each color element is restructured into closed area by LoG operator, the 2nd differential operator. The text area is contracted by Hough Transform, logical AND-OR operator of each color model and Minimum-Distance classifier. This paper targets natural image into which text area is added regardless of the size and resolution of the image, and it is confirmed to have more excellent performance than other algorithms with many restrictions.

  • PDF

Speech Recognition on Korean Monosyllable using Phoneme Discriminant Filters (음소판별필터를 이용한 한국어 단음절 음성인식)

  • Hur, Sung-Phil;Chung, Hyun-Yeol;Kim, Kyung-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 1995
  • In this paper, we have constructed phoneme discriminant filters [PDF] according to the linear discriminant function. These discriminant filters do not follow the heuristic rules by the experts but the mathematical methods in iterative learning. Proposed system. is based on the piecewise linear classifier and error correction learning method. The segmentation of speech and the classification of phoneme are carried out simutaneously by the PDF. Because each of them operates independently, some speech intervals may have multiple outputs. Therefore, we introduce the unified coefficients by the output unification process. But sometimes the output has a region which shows no response, or insensitive. So we propose time windows and median filters to remove such problems. We have trained this system with the 549 monosyllables uttered 3 times by 3 male speakers. After we detect the endpoint of speech signal using threshold value and zero crossing rate, the vowels and consonants are separated by the PDF, and then selected phoneme passes through the following PDF. Finally this system unifies the outputs for competitive region or insensitive area using time window and median filter.

  • PDF