• Title/Summary/Keyword: uniaxial strain

Search Result 504, Processing Time 0.024 seconds

Characterization of electromechanical properties of Sn-Cu double layer stabilized GdBCO coated conductor tapes at 77 K

  • Shin, Hyung-Seop;Diaz, Mark Aangelo;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.26-30
    • /
    • 2017
  • The promising characteristics of 2G high-temperature superconductor (HTS) coated conductor (CC) tapes have made it possible to apply to various electrical device applications. In this study, the mechanical and electromechanical properties of Sn-Cu double layer stabilized GdBCO CC tapes have been characterized. The stress and strain tolerances of $I_c$ in GdBCO CC tapes adopting stainless steel substrate were evaluated using $I_c$-strain measurement at 77 K under both uniaxial tension and monotonic bending conditions. The results were compared to the conventional single Cu layer stabilized CC tape. As a result, the Sn-Cu double layer stabilized GdBCO CC tapes showed somehow lower or comparable electromechanical properties as compared to the Cu stabilized CC tape ones.

A Yield Function for Sintered Porous Metals (소결분말금속의 항복함수)

  • 박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1115-1122
    • /
    • 1993
  • Several yield criteria for porous materials are compared with each other, defining the apparent yield stress as the yield stress of the porous material in simple compression. It was found that the plastic Poisson's ratio is the parameter needed to define the yield criterion, rather than the relative density. The plastic Poisson's ratio is regarded as a material characteristic that is obtained from a simple compression test. A new form of yield criterion was suggested, and it was applied to hydrostatic compression as well as uniaxial strain compression of sintered Al-2024 powder. The crossover point in the mean stress vs volume change curves of the processes was predicted. It is presented that the flow stress of the fully densed material can be obtained from that of the porous material using relations obtained from the yield criterion.

Derivation of constitutive equations of loose metal powder to predict plastic deformation in compaction (자유분말금속 압축시 소성변형예측을 위한 구성방정식의 유도)

  • Kim, Jin-Young;Park, Jong-jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.444-450
    • /
    • 1998
  • In the present investigation, it is attempted to derive a yield function and associated flow rules of loose metal powders to predict plastic deformation and density change during compaction. The loose metal powders yield by shear stress as well as hydrostatic stress and the yield strength is much smaller in tension than compression. Therefore, a yield function for the powders is expressed as a shifted ellipse toward the negative direction in the hydrostatic stress axis in the space defined by the two stresses. Each of parameters A, B and .delta. used in the yield function is expressed as a function of relative density and it is determined by uniaxial strain and hydrostatic compressions using Cu powder. Flow rules obtained by imposing the normality rule to the yield function are applied to the analyses of unidirectional, bidirectional and hydrostatic compressions, resulting in an excellent agreement with experiments. The yield function is further examined by checking volume changes in plane stain, uniaxial strain and shear deformations.

Uniaxial tension behavior of high ductile fiber reinforced mortar designed based on micromechanics (마이크로 역학에 의하여 설계된 고인성 섬유복합 모르타르의 1축인장 거동)

  • Kim, Yun-Yon;Kim, Jeong-Su;Kim, Hee-Sin;Kim, Jin-Keun;Ha, Gee-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.284-287
    • /
    • 2004
  • A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially performed to properly select water-cement ratio, and then optimal mixture proportion was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests revealed that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by $1.8\%$ strain capacity, which is around 100 times the strain capacity of normal concrete.

  • PDF

Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

Influence of bed joint orientation on interlocking grouted stabilised mud-flyash brick masonry under cyclic compressive loading

  • Nazar, Maqsud E.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.585-599
    • /
    • 2006
  • This paper describes a series of laboratory tests carried out to evaluate the influence of bed joint orientation on interlocking grouted stabilised mud-flyash brick masonry under uniaxial cyclic compressive loading. Five cases of loading at $0^{\circ}$, $22.5^{\circ}$, $45^{\circ}$, $67.5^{\circ}$ and $90^{\circ}$ with the bed joints were considered. The brick units and masonry system developed by Prof. S.N. Sinha were used in present investigation. Eighteen specimens of size $500mm{\times}100mm{\times}700mm$ and twenty seven specimens of size $500mm{\times}100mm{\times}500mm$ were tested. The envelope stress-strain curve, common point curve and stability point curve were established for all five cases of loading with respect to bed joints. A general analytical expression is proposed for these curves which fit reasonably well with the experimental data. Also, the stability point curve has been used to define the permissible stress level in the brick masonry.

Corrections for effects of biaxial stresses in annealed glass

  • Nurhuda, Ilham;Lam, Nelson T.K.;Gad, Emad F.;Calderone, Ignatius
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.303-316
    • /
    • 2011
  • Experimental tests have shown that glass exhibits very different strengths when tested under biaxial and uniaxial conditions. This paper presents a study on the effects of biaxial stresses on the notional ultimate strength of glass. The study involved applying the theory of elasticity and finite element analysis of the Griffith flaw in the micro scale. The strain intensity at the tip of the critical flaw is used as the main criterion for defining the limit state of fracture in glass. A simple and robust relationship between the maximum principal stress and the uniaxial stress to cause failure of the same glass specimen has been developed. The relationship has been used for evaluating the strength values of both new and old annealed glass panels. The characteristic strength values determined in accordance with the test results based on 5% of exceedance are compared with provisions in the ASTM standard.

Mechanical properties of ductile fiber-reinforced mortar designed based on micromechanics (마이크로역학에 의하여 제조된 고인성 섬유복합 모르타르의 역학적 특성)

  • Kim Yun Yong;Kim Jeong-Su;Kim Hee-Sin;Kim Jin-Keun;Ha Gee-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.825-828
    • /
    • 2004
  • The objective of this study is to examine mechanical properties of ductile fiber-reinforced mortar designed based on micromechanics. This mortar was produced by employing raw materials commercially available in Korea. To verify property level of this material in uniaxial tension, a series of direct tensile tests were performed with varying water cement ratio. In addition to this, flexural tests as well as compressive tests were carried out. Experiments revealed that the fiber reinforced mortar exhibited high ductility represented by strain hardening behavior in uniaxial tension. Significant enhancements of ductility, in terms of strain at peak stress and post-peak behavior, were also observed during the tests in compression and in bending.

  • PDF

Temperature Dependence of Electron Mobility in Uniaxial Strained nMOSFETs

  • Sun, Wookyung;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • The temperature dependence of strain-enhanced electron mobility in nMOSFETs is investigated by using a self-consistent Schr$\ddot{o}$dinger-Poisson solver. The calculated results suggest that vertical compressive stress is more efficient to maintain the strain-enhanced electron mobility than longitudinal tensile stress in high temperature condition.

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.