• Title/Summary/Keyword: unforgeable

Search Result 13, Processing Time 0.022 seconds

AN EFFICIENT AND SECURE STRONG DESIGNATED VERIFIER SIGNATURE SCHEME WITHOUT BILINEAR PAIRINGS

  • Islam, Sk Hafizul;Biswas, G.P.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.425-441
    • /
    • 2013
  • In literature, several strong designated verifier signature (SDVS) schemes have been devised using elliptic curve bilinear pairing and map-topoint (MTP) hash function. The bilinear pairing requires a super-singular elliptic curve group having large number of elements and the relative computation cost of it is approximately two to three times higher than that of elliptic curve point multiplication, which indicates that bilinear pairing is an expensive operation. Moreover, the MTP function, which maps a user identity into an elliptic curve point, is more expensive than an elliptic curve scalar point multiplication. Hence, the SDVS schemes from bilinear pairing and MTP hash function are not efficient in real environments. Thus, a cost-efficient SDVS scheme using elliptic curve cryptography with pairingfree operation is proposed in this paper that instead of MTP hash function uses a general cryptographic hash function. The security analysis shows that our scheme is secure in the random oracle model with the hardness assumption of CDH problem. In addition, the formal security validation of the proposed scheme is done using AVISPA tool (Automated Validation of Internet Security Protocols and Applications) that demonstrated that our scheme is unforgeable against passive and active attacks. Our scheme also satisfies the different properties of an SDVS scheme including strongness, source hiding, non-transferability and unforgeability. The comparison of our scheme with others are given, which shows that it outperforms in terms of security, computation cost and bandwidth requirement.

A Fuzzy Identity-Based Signcryption Scheme from Lattices

  • Lu, Xiuhua;Wen, Qiaoyan;Li, Wenmin;Wang, Licheng;Zhang, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4203-4225
    • /
    • 2014
  • Fuzzy identity-based cryptography introduces the threshold structure into identity-based cryptography, changes the receiver of a ciphertext from exact one to dynamic many, makes a cryptographic scheme more efficient and flexible. In this paper, we propose the first fuzzy identity-based signcryption scheme in lattice-based cryptography. Firstly, we give a fuzzy identity-based signcryption scheme that is indistinguishable against chosen plaintext attack under selective identity model. Then we apply Fujisaki-Okamoto method to obtain a fuzzy identity-based signcryption scheme that is indistinguishable against adaptive chosen ciphertext attack under selective identity model. Thirdly, we prove our scheme is existentially unforgeable against chosen message attack under selective identity model. As far as we know, our scheme is the first fuzzy identity-based signcryption scheme that is secure even in the quantum environment.

Analysis of Homomorphic Authenticated Encryption (Encrypt with Authenticate Construction) (결합 준동형 인증 암호의 안전성 분석)

  • Kim, Jinsu
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Data outsourcing utilizing the Cloud faces a problem of the third-party exposure, modulation, and reliability for the provided computational delegation results. In order to solve those problematic security issues, homomorphic encryption(HE) which executes calculation and analysis on encrypted data becomes popular. By extension, a new type of HE with a authentication functionality, homomorphic authenticated encryption(HAE) is suggested. However, a research on the HAE is on the initial stage. Furthermore, based on a message authenticated scheme with HE, the method and analysis to design is still absent. This paper aims to analyze an HAE, with a generic combination of a message authenticated scheme and a HE, known as "Encrypt with Authentication". Following a series of analysis, we show that by adopting a unforgeable message authenticated scheme, the generically constructed HAE demonstrated an unforgeability as well. Though, a strong unforgeability is not the case. This paper concludes that although indistinguishable HE can be applied to design the HAE, a security issue on the possibility of indistinguishability is still not satisfied.