• Title/Summary/Keyword: unfolding protein

Search Result 53, Processing Time 0.019 seconds

A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method (인공지능 기반 콩 생장분석 방법 연구)

  • Moon-Seok Jeon;Yeongtae Kim;Yuseok Jeong;Hyojun Bae;Chaewon Lee;Song Lim Kim;Inchan Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.1-14
    • /
    • 2023
  • Soybeans are one of the world's top five staple crops and a major source of plant-based protein. Due to their susceptibility to climate change, which can significantly impact grain production, the National Agricultural Science Institute is conducting research on crop phenotypes through growth analysis of various soybean varieties. While the process of capturing growth progression photos of soybeans is automated, the verification, recording, and analysis of growth stages are currently done manually. In this paper, we designed and trained a YOLOv5s model to detect soybean leaf objects from image data of soybean plants and a Convolution Neural Network (CNN) model to judgement the unfolding status of the detected soybean leaves. We combined these two models and implemented an algorithm that distinguishes layers based on the coordinates of detected soybean leaves. As a result, we developed a program that takes time-series data of soybeans as input and performs growth analysis. The program can accurately determine the growth stages of soybeans up to the second or third compound leaves.

hCG-induced Endoplasmic Reticulum Stress Leads to Activation of the IRE1/XBP1 Pathway in Mouse Leydig Tumor Cells (mLTC-1) (mLTC-1 세포에 hCG 처리에 의해 유도된 소포체 스트레스가 IRE1/XBP1 경로의 활성화 유발)

  • Park, Sun-Ji;Kim, Tae-Shin;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1039-1045
    • /
    • 2014
  • This study analyzed whether human chorionic gonadotropin (hCG) induces ER stress via the IRE/XBP1 pathway in mouse Leydig tumor (mLTC-1) cells. In a previous study, we demonstrated that the unfolding protein response (UPR) plays an important role in the expression of steroidogenic enzymes by modulating the ATF6 pathway, as well as ER stress-mediated apoptosis in hCG-stimulated Leydig cells. Although UPR signaling has been reported to regulate the IRE1/XBP1 pathway, it is not known whether hCG-induced ER stress in Leydig cells can activate the pathway. To investigate the activation of the IRE1/XBP1 pathway in mLTC-1 cells after hCG treatment, we performed a Western blot analysis to detect the phospho-IRE1 protein and an RT-PCR analysis to validate splicing of XBP1 mRNA. We used ER stress-activated indicator (ERAI) constructs for monitoring the activity of IRE1 and then analyzed by fluorescence microscopy and flow cytometry. The expression levels of the phospho-IRE1 protein markedly increased in response to the hCG treatment. In the mLTC-1 cells transfected with an F-XBP1-venus/F-$XBP1{\Delta}DBD$-venus construct, the hCG treatment led to the appearance of green fluorescent cells and detectable fluorescence in the nucleus and cytosol, respectively. In addition, splicing of XBP1 mRNA significantly increased after the hCG treatment. Taken together, these results indicate that hCG-induced ER stress leads to activation of the IRE1/XBP pathway in Leydig cells.

A novel cold-active lipase from Psychrobacter sp. ArcL13: gene identification, expression in E. coli, refolding, and characterization (새로운 Psychrobacter sp. ArcL13 유래 저온활성 지질분해효소 : 유전자 분리동정, 대장균에서의 발현, refolding 및 특성 연구)

  • Koo, Bon-Hun;Moon, Byung-Hern;Shin, Jong-Suh;Yim, Joung-Han
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.192-201
    • /
    • 2016
  • Recently, Psychrobacter sp. ArcL13 strain showing the extracellular lipase activity was isolated from the Chuckchi Sea of the Arctic Ocean. However, due to the low expression levels of the enzyme in the natural strain, the production of recombinant lipase is crucial for various applications. Identification of the gene for the enzyme is prerequisite for the production of the recombinant protein. Therefore, in the present study, a novel lipase gene (ArcL13-Lip) was isolated from Psychrobacter sp. ArcL13 strain by gene prospecting using PCR, and its complete nucleotide sequence was determined. Sequence analysis showed that ArcL13-Lip has high amino acid sequence similarity to lipases from bacteria of some Psychrobacter genus (84-90%) despite low nucleotide sequence similarity. The lipase gene was cloned into the bacterial expression plasmid and expressed in E. coli. SDS-PAGE analysis of the cells showed that ArcL13-Lip was expressed as inclusion bodies with a molecular mass of about 35 kDa. Refolding was achieved by diluting the unfolded protein into refolding buffers containing various additives, and the highest refolding efficiency was seen in the glucose-containing buffer. Refolded ArcL13-Lip showed high hydrolytic activity toward p-nitrophenyl caprylate and p-nitrophenyl decanoate among different p-nitrophenyl esters. Recombinant ArcL13-Lip displayed maximal activity at $40^{\circ}C$ and pH 8.0 with p-nitrophenyl caprylate as a substrate. Activity assays performed at various temperatures showed that ArcL13-Lip is a cold-active lipase with about 40% and 73% of enzymatic activity at $10^{\circ}C$ and $20^{\circ}C$, respectively, compared to its maximal activity at $40^{\circ}C$.