• Title/Summary/Keyword: underwater repair

Search Result 40, Processing Time 0.025 seconds

Mechanical and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure (수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 역학적 특성 및 내구성능 평가)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Sung, Sang-Kyung;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.35-41
    • /
    • 2007
  • The most agricultural concrete structures for the irrigation and drainage are exposed to the underwater condition at the irrigation period and they take the influence on very severe cold in the winter. Therefore, it is impossible to use repair materials used to the general concrete structures. The research need the development of the repair material for a performance enhance of the agricultural underwater concrete structures. This research evaluated the mechanical and durability performance of the latex modified repair mortar for underwater concrete structures which peformed the repair in the underwater according to the characteristic of the agricultural concrete structure. The latex modified repair mortar is a material that minimize the effect of the ecosystem, environment and the segregation. In this research, the construction condition of the latex modified repair mortar for agricultural concrete structures was considered and the test specimens made in the underwater condition. Test results was then compared with target performance and commercial repair mortar. Experimental test results indicated that the mechanical and durability performance of latex modified repair mortar for agricultural underwater concrete structure satisfied all target performance. Also, the latex modified repair mortar resulted in better repair performance than the commercial repair mortar.

Performance Evaluation of the Underwater Structure which used a Epoxy Panel (에폭시 섬유판넬을 이용한 수중구조물의 단면보수시스템에 대한 성능평가)

  • 박준명;홍성남;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.343-346
    • /
    • 2003
  • Confirmation of a damage degree and repair about a damage part are very hard for an underwater structure. And quality control of a construction is very complicated even if repair work is carried out on a damaged structure because repair work is carried out in water. If repair work is carried out while a defect part of the structure which there is in water keeps dry state, a efficient of repair is maximized. However, as for the repair technology about an underwater structure, a systematic researcher is not enough because of the environmental trouble. And, as for the effect about repair method to be applied to a currently underwater structure, it is not certainly proved. In this study The repair work of an underwater structure damaged applied the method that used a fiber panel form work. And a efficient of structure repaired was evaluated.

  • PDF

Optimum Mix Proportions of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure (수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Lee, Sang-Woo;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.43-50
    • /
    • 2007
  • The purpose of this study was to determine the optimum mix proportion of latex modified mortar for agricultural underwater concrete structures repair. The experimental variables included a latex and antiwashout admixture amount, binder-sand ratio, water-binder ratio. This study were evaluated a repair performance and environment effect of latex modified repair mortar for agricultural underwater concrete structures. The pH test was conducted to evaluated the environmental effect and the flow test was peformed to evaluated the workability. Also, compressive, flexural and bond tests were conducted. Test results show that the optimum mix proportion of latex modified repair mortar for agricultural underwater concrete structures, was achieved by 1:1.5 binder-sand ratio, 5% latex ratio (weight of binder), 1.3% antiwashout admixture ratio (weight of binder), 0.33 water-binder ratio and 10% silica lune replacement ratio (weight of cement). The environmental effect and repair performance of optimum mix proportion satisfied all target performance.

Evaluation of Underwater-Curing Coating Materials

  • Nah, Hwan-Seon;Kim, Kang-Seok;Kim, Kang-Sik;Lee, Chul-Woo;Baker, Randy
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.68-73
    • /
    • 2009
  • An evaluation of underwater - repair coating materials was based on the premise that defective areas of the existent epoxy coating such as blistering and cracking will be repaired on spot under submerged condition. Tests include the clarification as to whether they are compatible between as-built coating and new repair coating on each concrete specimen. Candidate coating materials for repair were tested in a laboratory to scrutinize their suitability to perform the needed function satisfactorily. The qualification tests performed are as a minimum as follows: Integrated radiation tolerance test, chemical resistance test (submerged condition in deionized water), hardness test and adhesion test of the repair materials. The proper repair coating materials were selected and approved from this test results.

An Experimental Study about Behavior of a Repaired Underwater Structure with an Epoxy Fiber Panel and Polymer Mortar (에폭시 섬유판넬과 폴리머 모르타르로 단면보수된 수중구조물의 거동에 관한 실험적 연구)

  • Hong, Sung-Nam;Park, Jun-Myoung;You, Chung-Jun;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.69-77
    • /
    • 2009
  • An underwater structure is made to put with serious damage state by special environmental factors. If this damage phenomena persist, as for the structure, it is generated a structural serious problem because of the corrosion of a reinforcing bar and the loss of the concrete cut end. Repair work of an underwater structure is very harder than repair work in land, and it is actual that certification about a maintenance effect is uncertain. And the existing repair method is applied to a structure damaged with you without verification of a repair effect by a foreign reward and experience. In this study, a repair method about an underwater structure was proposed and observed a behavior characteristic and interface failure of an specimens. and comparison analyzed an effect of a proposed maintenance method.

Basic Mix Proportions of Antiwashout Underwater Polymer Cement Mortar as a Repair Material (보수재료로서 수중불분리 폴리머 시멘트 모르타르의 기초적 배합)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.193-194
    • /
    • 2019
  • The purpose of this study is to design the basic mix proportions of antiwashout underwater polymer cement mortar as a repair material. The antiwashout underwater polymer cement mortars are prepared with various mix proportions using three type polymer dispersions without or with antifoamer. From the test results, the whole antiwashout underwater polymer cement mortars can be cast underwater without segregation like plain mortar. It is apparent that the flexural strength of antiwashout underwater SBR cement mortars with antifoamer at polymer- cement ratios of 5% and 10% is higher than that of plain mortar irregardless of a little low compressive strength.

  • PDF

Evaluation of Underwater Dam Concrete Structure Repair by Patching Material (댐 시설물 수중구조체 보수용 패칭재료의 적용 가능성 평가)

  • Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.77-81
    • /
    • 2009
  • This study was performed to evaluate applicability of patching materials for underwater dam concrete structure. Two kinds of patching materials was investigated. Laboratory experimentals were conducted by workability, compressive strength, bond strength, chloride ion penetration, abrasion resistance. Test results showed that the most performances are relatively good except chloride ion penetration.

Study on Cooling Characteristic Improvement in Underwater Wet Arc Welding of TMCP Steelplate (TMCP강의 습식수중 아크용접부의 냉각특성 개선에 관한 연구)

  • 김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.113-124
    • /
    • 1992
  • The offshore industry created a need for quality wet weld repairs. Wet welding is a fast method of repair providing sound, structural quality welds. It requires less support equipment than a similar underwater dry weld repair or the alternative mechanical connections. Compared to welds made in air, underwater wet welds are plagued by increased hardness due to rapid quenching by the surrounding water. In this paper is described the experimntal study of improving the cooling rates of wet welds of TMCP steel plate by shielding around weld arc surroundings. The principal results of this experimental investigation can be summarized as follows : By shielding around weld arc surrounding, the cooling rates resulting from wet welds on TMCP steel plate could be lower than that of nonshielded wet welds and the fesibility on high quality of mecanical properties of wet weld on TMCP steel plate was carried out with shielded weld arc surrounding.

  • PDF

The Engineering Properties of Underwater-Hardening Epoxy Mortar According to the Replacement Proportion of RCSS (급냉 제강 슬래그의 대체율에 따른 수중 경화형 에폭시 모르타르의 공학적 특성)

  • Kawg Eun-Gu;Cho Sung-Hyun;Park Sang-Hun;Bae Kee-Sun;Chang Won-Seok;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.401-404
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performance are considered in structures. Epoxy mortar in the underwater used to the repair and reinforcement for durability. Epoxy mortar in the underwater-harding maked epoxy and filler. Filler is divided aggregate and powder system. Because aggregate take a matter too seriously to supply that alternation material is used to rapidly chilled steel slag. As result of study, it is possible that rapidly chilled steel slag can be applied for replacement materials about aggregate in epoxy mortar because the strength is not different.

  • PDF

A Study on the Applicability of Acrylic Water Leak Repair Materials used to Repair Cracks in Conduits and Underground Structures (관거 및 지하구조물 균열 보수에 사용되는 아크릴 누수 보수재의 적용성에 대한 연구)

  • Eunmi Lee;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.139-146
    • /
    • 2024
  • Various injection materials, such as asphalt-based injection materials, urethane-based injection materials, cement- based injection materials, and acrylic-based injection materials, are used for the repair of aged conduits and underground structures with cracks. In this study, research was conducted on an environmentally friendly acrylic- based leak repair material that exhibits good curing properties even in humid conditions and stability in temperature fluctuations. To compare the performance of the improved acrylic leak repair material with the existing acrylate injection material, experiments were conducted using KS standard methods, including underwater length change rate tests, underwater leakage resistance tests, and chemical performance tests. The comparative experiments revealed that the improved acrylic leak repair material showed no changes in shrinkage due to humidity, temperature variations, or chemical reactions compared to the existing acrylate injection material. In the underwater resistance test, the improved acrylic leak repair material did not show any leakage. Additionally, to assess the environmental impact of the improved acrylic leak repair material, acute fish toxicity tests and acute oral toxicity tests were conducted, and the results showed no mortality and no specific concerns with the test specimens. The experimental results led to the conclusion that the improved acrylic leak repair material is considered to be superior in performance, environmentally safe, and harmless to the human body. Based on various experimental results, it is inferred that the improved acrylic leak repair material is suitable for use as a repair material for cracks in manholes and underground structures compared to the existing acrylate repair material. This study aims to propose valuable data for future technological development by evaluating the applicability of acrylic leak repair materials.