• Title/Summary/Keyword: underwater noise

Search Result 467, Processing Time 0.026 seconds

Construction and Functional Tests of Fuel Assembly Mechanical Characterization Test Facility (핵연료집합체 기계적특성 시험시설 구축과 기능시험)

  • Lee, Kang-Hee;Kang, Heung-Seok;Yoon, Kyung-Ho;Yang, Jae-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • Fuel assembly's mechanical characterization test facility (FAMeCT) in KAERI was constructed with upgraded functional features such as increased loading capacity, underwater vibration testing and severe earthquake simulation for extended fuel design guideline. This facility is designed and developed to provide out-pile fuel data for accident analysis model and fuel licensing. Functional tests of FAMeCT were performed to confirm functionality, structural integrity, and validity of newly-built fuel assembly mechanical test facility. Test program includes signal check of data acquisition system, load delivering capacity using real-sized fuel assemblies and a standard loading cylindrical rigid specimen. Fuel assembly's lateral bending test was carried out up to 30 mm of pull-out displacement. Limit case axial compression loading test up to 33 kN was performed to check structural integrity of UCPS (Upper Core Plate Simulator) support frame. Test results show that all test equipment and measurement system have acceptable range of alignment, signal to noise ratio, load carrying capacity limit without loss of integrity. This paper introduces newly constructed fuel assembly's mechanical test facility and summarizes results of functional test for the mechanical test equipment and data acquisition system.

A Study on a Post-Processing Technique for MBES Data to Improve Seafloor Topography Modeling (해저지형 모델링 향상을 위한 MBES자료 후처리 기법 연구)

  • Kim, Dong-Moon;Kim, Eung-Nam
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.19-28
    • /
    • 2011
  • Three dimensional modeling for seafloor topography is essential to monitoring displacements in underwater structures as well as all sorts of disasters along the shore. MBES is a system that is capable of high-density water depth measurement for seafloor topography and is in broad uses for gathering 3D data and detecting displacements. MBES data, however, contain random errors that take place in the equipment offset and surveying process and require systematic researches on the correction of wrong depth measurements. Thus this study set out to propose a post-processing technique to eliminate an array of random errors taking place after equipment offset correction and basic noise correction in the MBES system and analyze its applicability to seafloor topography modeling by applying it to the subject area.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Sensitivity Analysis of Long Baseline System with Three Transponders (세 개의 트랜스폰더로 이루어진 장기선 위치추적장치의 민감도 해석)

  • Kim, Sea-Moon;Lee, Pan-Mook;Lee, Chong-Moo;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.27-31
    • /
    • 2003
  • Underwater acoustic navigation systems are classified into three systems: ultra-short baseline (USBL), short baseline (SBL), and long baseline (LBL). Because the USBL system estimates the angle of a submersible, the estimation error becomes large if the submersible is far from the USBL transducer array mounted under a support vessel. SBL and LBL systems estimate submersible's location more accurately because they have wider distribution of measuring sensors. Especially LBL systems are widely used as a navigation system for deep ocean applications. Although it is most accurate system it still has estimation errors because of noise, measurement error, refraction and multi-path of acoustic signal, or wrong information of the distributed transponders. In this paper the estimation error of the LBL system are analyzed from a point of sensitivity. It is assumed that the error exists only in the distance between a submersible and the transponders. For this purpose sensitivity of the estimated position with respect to relative distances between them is analyzed. The result says that estimation error is small if the submersible is close to transponders but not near the ocean bottom.

  • PDF

A Basic Study on the Water Level Limit Sensor Utilizing Acoustic Impedance Matching (음향임피던스 정합을 이용한 액면레벨 리미트 센서의 기초연구)

  • Kim, Cheol-Han;Lee, Su-Ho;SaGong, Geon;Lee, Jun-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.352-353
    • /
    • 2005
  • In this paper, an ultrasonic level limit sensor with a new structure utilizing the acoustic impedance matching is proposed to be able to check it out a change of water-level. 2 PZT resonators with the same property are bonded directly on the polyethylene plate. One is for transmitter as an ultrasonic transducer, the other one is for receiver. In this case, a polyethylene plate will operate as an acoustic guider to transmit a transverse wave between 2 PZT resonators in air. While in the water, a polyethylene plate having a similar acoustic impedance with the water will be emitted an acoustic energy into the water as a longitudinal wave. According to this mechanism, there was a wide difference of acoustic signal output between underwater and in air. As a summary, it is believed that this proposed level limit sensor could be used as a new one with strong toughness from the external electrical and mechanical noise.

  • PDF

Ship Monitoring around the Ieodo Ocean Research Station Using FMCW Radar and AIS: November 23-30, 2013

  • Kim, Tae-Ho;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2022
  • The Ieodo Ocean Research Station (IORS) lies between the exclusive economic zone (EEZ) boundaries of Korea, Japan, and China. The geographical positioning of the IORS makes it ideal for monitoring ships in the area. In this study, we introduce ship monitoring results by Automatic Identification System (AIS) and the Broadband 3GTM radar, which has been developed for use in small ships using the Frequency Modulated Continuous Wave (FMCW) technique. AIS and FMCW radar data were collected at IORS from November 23th to 30th, 2013. The acquired FMCW radar data was converted to 2-D binary image format over pre-processing, including the internal and external noise filtering. The ship positions detected by FMCW radar images were passed into a tracking algorithm. We then compared the detection and tracking results from FMCW radar with AIS information and found that they were relatively well matched. Tracking performance is especially good when ships are across from each other. The results also show good monitoring capability for small fishing ships, even those not equipped with AIS or with a dysfunctional AIS.

Review of the marine environmental impact assessment reports regarding offshore wind farm

  • Oh, Hyun-Taik;Chung, Younjin;Jeon, Gaeun;Shim, Jeongmin
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.11
    • /
    • pp.341-350
    • /
    • 2021
  • The energy production of offshore wind farms plays an important role in expanding renewable energy. However, the development of offshore wind farms faces many challenges due to its incompatibility with marine environments and its social acceptability among the local community. In this study, we reviewed the marine environmental impact assessment status of offshore wind farm development projects for 2012-2019 in South Korea. A total of nine projects were selected for this study, all of which experienced considerable conflict with local fisheries resources. To appropriately respond to the underlying challenges faced by offshore wind farm development and in order to better support decision-making for future impact assessment, our findings identified: i) a need for adequate preliminary investigation and technical examination of fisheries resources; ii) a need to assess and estimate the impact of underwater noise, vibration, and electromagnetic waves on fisheries resources during wind farm construction and operation; and iii) a need for a bottom-up approach that allows for communication with local stakeholders and policy-makers to guarantee the local acceptability of the development.

A Study of Improve on a Backscatter Data of Multibeam Echo-sounder Using Digital Image Processing (디지털 영상처리기법를 이용한 멀티빔 음향측심기의 음압자료 향상 연구)

  • Hye-Won Choi;Doo-Pyo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.133-141
    • /
    • 2023
  • Accurate measurement of seafloor topography plays a crucial role in developing marine industries such as maritime safety, resource exploration, environmental protection, and coastal management. The seafloor topography is constructed using side scan sonar (SSS) and single beam echosounder (SBES) or multibeam echosounder (MBES), which transmit and receive ultrasound waves through a device attached to a marine survey vessel. However, the use of a sonar system is affected by noise pollution areas, and the single beam has a limited scope of application. At the same time, the multibeam is mainly applicable for depth observation. For these reasons, it is difficult to determine the boundaries and areas of seafloor topography. Therefore, this study proposes a method to improve the backscatter data of multibeam echosounder, which has a relationship with the seafloor quality, by using digital image processing to classify the shape of the underwater surface.

Cavitation signal detection based on time-series signal statistics (시계열 신호 통계량 기반 캐비테이션 신호 탐지)

  • Haesang Yang;Ha-Min Choi;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.400-405
    • /
    • 2024
  • When cavitation noise occurs in ship propellers, the level of underwater radiated noise abruptly increases, which can be a critical threat factor as it increases the probability of detection, particularly in the case of naval vessels. Therefore, accurately and promptly assessing cavitation signals is crucial for improving the survivability of submarines. Traditionally, techniques for determining cavitation occurrence have mainly relied on assessing acoustic/vibration levels measured by sensors above a certain threshold, or using the Detection of Envelop Modulation On Noise (DEMON) method. However, technologies related to this rely on a physical understanding of cavitation phenomena and subjective criteria based on user experience, involving multiple procedures, thus necessitating the development of techniques for early automatic recognition of cavitation signals. In this paper, we propose an algorithm that automatically detects cavitation occurrence based on simple statistical features reflecting cavitation characteristics extracted from acoustic signals measured by sensors attached to the hull. The performance of the proposed technique is evaluated depending on the number of sensors and model test conditions. It was confirmed that by sufficiently training the characteristics of cavitation reflected in signals measured by a single sensor, the occurrence of cavitation signals can be determined.

A Broadband FIR Beamformer for Underwater Acoustic Communications (수중음향통신을 위한 광대역 FIR 빔형성기)

  • Choi, Young-Chol;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2151-2156
    • /
    • 2006
  • Beamforming for underwater acoustic communication (UAC) is affected by the broadband feature of UAC signal, which has relatively low currier frequency as compared to the signal bandwidth. The narrow-band assumption does not hold good in UAC. In this paper, we discuss a broadband FIR beamformer for UAC using the baseband equivalent way signal model. We consider the broadband FIR beamformer for QPSK UAC with carrier frequency 25kHz and symbol rate 5kHz. Array geometry is a uniform linear way with 8 omni-directional elements and sensor spacing is the half of the carrier wavelength. The simulation results show that the broadband n beamformer achieves nearly optimum signal to interference and noise ratio (SINR) and outperforms the conventional narrowband beamformer by SINR 0.5dB when two-tap FIR filter is employed at each sensor and the inter-tap delay is a quarter of the symbol interval. The broadband FIR beamformer performance is more degraded as the FIR filter length is increased above a certain value. If the inter-tap delay is not greater than half of the symbol period, SINR performance does not depend on the inter-tap delay. More training period is required when the inter-tap delay is same as the symbol period.