• Title/Summary/Keyword: underwater concrete

Search Result 143, Processing Time 0.024 seconds

A Fundamental Study on the Optimal Mix Proportion for Antiwashout Underwater Concrete (수중 비분리 콘크리트의 최적 배합비에 관한 기초적 연구)

  • 진치섭;김희성;한태영
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.224-232
    • /
    • 1995
  • Recently, in other.view of underwater concrete construction, special admixture agent of concrete has been developed for antiwashout of concrete under water with easy carrying out method in some foreign nations. They had successful cases in experiment and construction and it trend to use in many cases with many scales. However, in domestic, there was rare record in carrying out. In this paper, reference for successful results of experiment and construction about antiwashout underwater concrete, as variable add of special admixture agent and other agents. We have carried out property tests of fresh and hardened concrete, certified the properties and made the antiwashout underwater concrete have enough strength to endure with ea.sy construction. And we have decided the optimal mix proportion for antiwashout underwater concrete under standard state.

Mechanical and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure (수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 역학적 특성 및 내구성능 평가)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Sung, Sang-Kyung;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.35-41
    • /
    • 2007
  • The most agricultural concrete structures for the irrigation and drainage are exposed to the underwater condition at the irrigation period and they take the influence on very severe cold in the winter. Therefore, it is impossible to use repair materials used to the general concrete structures. The research need the development of the repair material for a performance enhance of the agricultural underwater concrete structures. This research evaluated the mechanical and durability performance of the latex modified repair mortar for underwater concrete structures which peformed the repair in the underwater according to the characteristic of the agricultural concrete structure. The latex modified repair mortar is a material that minimize the effect of the ecosystem, environment and the segregation. In this research, the construction condition of the latex modified repair mortar for agricultural concrete structures was considered and the test specimens made in the underwater condition. Test results was then compared with target performance and commercial repair mortar. Experimental test results indicated that the mechanical and durability performance of latex modified repair mortar for agricultural underwater concrete structure satisfied all target performance. Also, the latex modified repair mortar resulted in better repair performance than the commercial repair mortar.

A Study on the Hydration Heat of Antiwashout Underwater Concrete Using Fly Ash (플라이애쉬를 사용한 수중불분리성 콘크리트의 수화열에 관한 연구)

  • 권중현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.30-34
    • /
    • 2000
  • The concretes cast in the sea water would be likely to be rich mix and mass concrete. Therefore it is important to check out the hydration heat of concrete and to reduce it to prevent the concrete from processing the temperature crack. Recently the antiwashout agent is used on underwater concrete for preventing from the segregation of concrete in the water. The experimental studies were done for the combined cement replaced by fly ash 30%unit weight of binder to study on the characteristics of hydration heat of antiwashout underwater concrete, and its characteristic was discussed by comparing on cast in sea water with anther one in air. The present paper showed that the hydration heat concrete replaced by 30%of fly ash was more significantly reduced than the normal concrete. The hydration heat of antiwashout underwater concrete was highter than that of normal concrete, but it was reduced lower than the normal concrete by adding fly ash.

  • PDF

An Experimental Study on Underwater Concrete Using the Antiwashout Admixture (수중불분리성혼화제를 첨가한 콘크리트의 특성에 관한 실험적 연구)

  • 정범석;최계식;이규재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.47-52
    • /
    • 1993
  • Admixtures for concrete placed underwater have been developed to the stage that they are now widely used. The use of this type of product allows concrete to be placed underwater with far less risk than was previously possible. One of the problems facing users of underwater concreting admixtures is how does one test such products in order to access their performance initially while minimizing the expense of carrying out site trials. This paper will introduce three categories of laboratory test for underwater concrete listed next : fluidity test, non-segregation test, strength test. Trial underwater concretes were ordinary Portland cement. Strength and workability development and segregation resistance properties of the concrete under the coexistence of some kinds of superplasticizer were studied for this laboratory tests.

  • PDF

The Influence of Viscosity Agent on Non-Segregation Property in Underwater Concrete (수중 콘크리트의 분리 저항성에 미치는 중점제의 영향)

  • 김선만;김영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.117-122
    • /
    • 1996
  • The purpose of this study is to investigate the properties of underwater concrete using three kinds of cellulose ether which has viscosity and water retention. The result is that water retention in underwater concrete shows in inverse proportion to PH value and the compressive strength is almostly effected by water retention. It can be certificated by the zeta electro potential value of an undispersed underwater concrete.

  • PDF

Comparative Study on the Underwater Concrete Properties using various Anti-washout Admixtures (수중불분리성 혼화재의 종류에 따른 콘크리트의 성능 비교연구)

  • 백승준;박희민;성상래;윤영수;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.366-372
    • /
    • 1996
  • This paper persents the characteristics and properties of the five domestic and foreign-made anti-washout admixtures commercially available in Korea. These admixtures have been analysed by experiments to compare among others specifically on the following items : air content, slump-flow, hardening time, pH, filling condition, turbidity, content of chloride, compressive strength of underwater concrete and ratio of ambient / underwater concrete compressive strength. The mix design for comparison has been set according to the Japanese practicesince there is still no guideline concerning underwater concrete available domestically.

  • PDF

In-Situ Application of High-Strength Antiwashout Underwater Concrete

  • Moon Han-Young;Song Yong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.283-291
    • /
    • 2004
  • Recently, the construction of underwater structures has been gradually increased, but underwater concrete got some problems of quality deterioration and water contamination around cast-in-situ of construction. In addition, massive underwater structures such as LNG tank, underwater concrete structures of large and continuous high- strength subterranean wall under water are being demanded lower heat of hydration. In this paper, the mechanical properties of high-strength antiwashout underwater concrete (HAWC) containing with two kinds of mineral admixtures respectively were investigated. On the basis of these results, the pH value and suspended solids of HAWC manufactured in the mock-up test were 10.0$\Box$11.0 and 51 mg/${\iota}$ at 30 minutes later, respectively, initial and final setting time were about 30,37 hours, and the slump flow was 530$\pm$20Tm. In the placement at a speed of $27 m^3/hr$, there was no large difference in flowing velocity with or without reinforcing bar, and flowing slope was maintained at horizontal level. Compressive strength and elastic modulus of the cored specimen somewhat decreased as flowing distance was far; however, those of central area showed the highest value.

Evaluation on Steel Bar Corrosion Embedded in Antiwashout Underwater Concrete

  • Moon Han-Young;Shin Kook-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.303-309
    • /
    • 2005
  • This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed on three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures. The three series of antiwashout underwater concrete were: concrete constituted exclusively with ordinary portland cement (OPC), concrete composed of ordinary portland cement mixed with fly-ash in $20\%$ ratio (FA20), and concrete with ground granulated blast furnace slag mixed in $50\%$ ratio (BFS50). The environment of manufacture was in artificial seawater. Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below -350mv after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as $30{\mu}A/mm^2$ and $0.258\%$. On the other hand, for the other specimens that are FA20 and BFS50, potential values below -350mV were observed later at 18 and 20 cycles, respectively. Results confirmed the hypothesis that mineral admixtures may be more effective on delay the development of steel bar corrosion in antiwashout underwater concrete.

An Experimental Study on the Characteristics of Compressive Strength of Antiwashout Underwater Concrete with Curing Water (양생수에 따른 수중불분리콘크리트의 압축강도특성에 관한 실험적 연구)

  • 윤재범;고창섭;김명식;장희석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-138
    • /
    • 1999
  • The objective of this study is to investigate the compressive strength property of antiwashout underwater concrete with curing water through experimental researches. Type of casting and curing water(fresh water, sea water) are used as main experimental parameter, additionally a few variables affecting compressive strength property are used ; water-cement ratio (45%, 48%, 50%, 52%, 55%), and unit weight of admixtures (antiwashout underwater agent ; 0.6%, 0.8%, 1.0%, 1.2%, 1.4% of unit weight of water, superplasticizer ; 0.5%, 1.0%, 1.5%, 2.0%, 2.5% of unit weight of cement)) Compressive strength level of antiwashout underwater concrete which was cast and cured in fresh water is higher than other one. Consequently, incremental modulus has to increase when the antiwashout underwater concrete is made use of underwater work from ocean.

  • PDF

An Experimental Study on the Optimal Mix Proportion for Antiwashout Underwater Concrete (수중불분리성 혼화제를 첨가한 콘크리트의 최적배합비에 관한 실험적 연구)

  • 조선규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.179-187
    • /
    • 1996
  • Many underwater concrete structures have been constructed recently in proportion to the increase of ocean developments. The research for the underwater concrete construction was mainly focused in view of placing method. Recently, special admixture agents of concrete were developed for antiwashout concrete under water in some foreign nations. They had successful results in experiments and site constructions. However. there are seldom experimental results or placements in domestic contry. In this paper. We had carried out property tests of fresh and hardened concrete with refer to successful results in experiments and site construction and investigated the physical variation of the antiwashout underwater concrete considering the interaction between antiwashout admixture and other ones. We have decided the optimal mix proportion fb;r antiwashout underwater concrete under standerd sea state.