• Title/Summary/Keyword: underhood

Search Result 3, Processing Time 0.015 seconds

AUTOMOBILE UNDERHOOD THERMAL AND AIR FLOW SIMULATION USING CFD (전산유체역학을 이용한 자동차 엔진룸의 열 및 유동장 해석)

  • Oh, K.T.;Kim, J.H.;Lee, S.W.;Kim, Y.S.;Ha, J.W.;Kang, W.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2007
  • Automobile underhood thermal and airflow simulation h α s been performed by using a commercial CFD program, FLUENT. To implement the radiation heat transfer effect to the underhood thermal and flow field, Discrete Ordinates Method(DOM) was used. The cooling fan was modeled by using the Multiple Reference Frame(MRF) technique. For the implementation of the heat exchangers, such as radiator and condenser, which are located in the front side of vehicle, the effectiveness-NTU model was used. The pressure drop throughout the heat exchangers was modeled as Porous media. For the validation of the current computational method, the coolant temperature at the inlet port of the radiator was compared with experimental data, and less than 3% error was observed. Finally, the composed model was used for the cooling fan spec determination process in the development of a new vehicle, and the results showed that the current CFD method could be successfully applied to the vehicle development process.

A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method (미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법)

  • Lee, Sang-Hyuk;Kim, Joo-Han;Lee, Na-Ri;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF

An Analysis of Engine Cooling using a Three-dimensional Radiator Model (3차원 방열기 모델을 이용한 엔진냉각 해석)

  • 이영림
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.10-17
    • /
    • 2001
  • The performance of a radiator is generally determined using a wind tunnel, in which the air velocity is uniform. However, when it is installed in a car, the distribution of the air velocity becomes nonuniform due to front-end openings, cross members, and horns etc., resulting in lower performance. In this study, several underhood flow simulations have been first performed to get flow rates and velocity distributions over the radiator. Secondly heat release rates are calculated by both a performance curve and a radiator model. Finally, using an engine cooling system simulator, radiator-top-tank temperature is predicted and the variations of heat release rate and radiator-top-tank temperature with nonuniformity of air velocity distributions are analyzed. The results show that the current engine cooling model successfully accounts for the nonuniformity effects that should be considered for higher accuracy in predicting engine cooling performance.

  • PDF