• 제목/요약/키워드: underground water and swelling pressure

검색결과 17건 처리시간 0.027초

심지층 고준위 핵폐기물 처분용기의 열응력 해석 (Thermal Stress Analysis of Spent Nuclear Fuel Disposal Canister)

  • 하준용;권영주;최종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.617-620
    • /
    • 1997
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressure of underground water, swelling pressure of bentonite buffer, and the thermal load due to the heat generation of spent nuclear fuel in the basket etc.. Hence, the canister should be designed to designed to withstand these loads. In this paper, the thermal stress analysis is done using the finite element analysis code, NISA.

  • PDF

지하수압 변화에 따른 심지층 핵폐기물 처분용기 내부 주철 구조물의 응력해석 (A Stress Analysis of the Cast Iron Insert of Spent Nuclear Fuel Disposal Canister with the Underground Water Pressure Variation in a Deep Repository)

  • 강신욱;권영주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, the stress analysis of the cast iron insert of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressue of underground water, swelling pressure of bentonite, sudden rock movement etc.. Hence, the canister should be designed to withstand these loads. The cast iron insert of the canister mainly supports these loads. Therefore, the stress analysis of the cast iron insert is done to determine the design variables such as the diameter versus length of canister and the number and array type of inner baskets in this paper, The linear static structural analysis is done using the finite element analysis method. And the finite element analysis code, NISA, is used for the computation.

  • PDF

가압경수로 고준위페기물 처분용기에 대한 크립해석 (Creep Analysis for the Pressurized Water Reactor Spent Nuclear Fuel Disposal Canister)

  • 하준용;최종원;권영주
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.413-421
    • /
    • 2004
  • 본 논문에서는 깊은 지하 500m에 처분된 가압경수로(PWR) 고준위폐기물 처분용기에 지하수압과 벤토나이트 팽윤압이 가해지는 동안 처분용기에 발생하는 크립변형을 예측하기 위하여 처분용기에 대한 구조해석을 수행하였다. 보통 이러한 크립변형은 처분용기에 추가적인 외력이 작용하지 않더라도 처분용기에 작용하는 압력과 내부의 높은 열에 의하여 발생될 수 있다. 처분용 기내부의 열분포의 복잡성 덴 시간의존성으로 인하여 일단 외부 지하수압 및 팽윤압만 고려하여 크립해석을 수행하였다. 이를 위하여 적당한 크립함수를 사용하였으며, 해석은 1억$(10^8)$초 동안 수행하였다. 해석결과 1억초 동안 발생하는 크립 변형률은 매우 작으며 주희 처분용기의 위아래 덮개에 발생함을 알 수 있었다. 그러나 처분용기의 구조강도에 중요한 내부 주철삽입물에는 훨씬 더 작은 미소한 변형률만 발생하여 처분용기에 발생하는 크립변형은 처분용기의 구조적인 안전성에는 큰 영향을 미치지 않음을 알 수 있었다. 해석 초기에 처분용기 내에 급격히 응력이 증가하여 최고치에 도달한 후 잠깐동안 이 응력 값을 유지하다가 그 이 후에는 급격히 응력 값이 감소하는 응력이완현상을 보이고 있기 때문에 발생 응력 측면에서도 전혀 처분용기의 구조적인 안전성에 문제가 없음이 확인되었다.

사전수화 벤토나이트 방수재의 염수환경 지하구조물 적용 특성에 관한 실험적 연구 (An Experimental Study on the Underground Structure Apply Properties to Salt Water Environment of Pre-hydrated Bentonite Waterproofing.)

  • 이정훈;이선규;최성민;오상근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.833-836
    • /
    • 2008
  • 본 연구는 기존 벤토나이트 방수재가 염수환경의 지하구조물 적용에 있어서 초기 수화에 의한 팽창이 안 됨으로써 염수의 침입을 허용하여 구조물이 누수로 이어지는 문제점을 보완하기 위하여 최근 개발된 사전수화 시킨 형태의 벤토나이트 쉬트에 관하여 염수환경 적용 특성을 중심으로 연구하고자 하였다. 이를 위해 본 연구에서는 사전수화형 벤토나이트 시트를 대상으로 염수환경을 기본 전제조건으로 한 상태에서 점결성, 팽윤성, 투수성 등의 시험을 통하여 그 성능특성의 변화를 중점 고찰하였다. 본 연구결과 염수환경에서 초기 투수를 허용하지 않았으며, 최대 $3kgf/cm^2$ 수압으로 72시간까지 투수가 발생하지 않았다. 점결성과 팽윤성 확인결과 담수환경에서는 겔화의 충분한 진행이 확인 되었고, 염수환경에서는 판상구조의 갈라짐 현상이 보였으나 이는 벤토나이트가 수화하면서 결정층간이 팽윤된 것으로 판단된다. 따라서 방수재 상부에 누름층과 같은 압밀조건이 형성된다면 염수환경의 지하구 조물 적용에 있어서 기대가된다.

  • PDF

AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

  • Kwon, S.;Cho, W.J.;Lee, J.O.
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.41-52
    • /
    • 2013
  • Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

가압경수로 고준위폐기물 처분용기의 열응력 해석 (Thermal Stress Analysis of the Disposal Canister for Spent PWR Nuclear Fuels)

  • 권영주;하준용;최종원
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.471-480
    • /
    • 2002
  • 본 논문에서는 가압경수로(PWR) 고준위폐기물을 깊은 지하 500 m에 처분 시 사용되는 처분용기의 기본 구조설계에 필요한 처분용기 구조물에 대한 열응력 해석을 수행하였다. 일반적으로 고준위폐기물 처분용기는 지하 수백 미터에 위치하는 화강암 등의 암반 내에 설치하게 되는데, 이 때 처분용기는 내부 바스켓에 채워진 사용 후 핵연료다발의 높은 온도에 따른 열발생에 의하여 내부 주철삽입물 및 외곽쉘에 발생하는 열응력에 견디어야 한다. 따라서 본 논문에서는 처분용기 내부의 핵연료 다발의 열발생을 고려한 열응력 해석을 수행하였다 해석 방법은 유한요소법을 사용하였다. 직접 유한요소해석코드를 작성하는 대신에 구조물의 복잡성 및 유한요소개수의 많음을 고려하여, 상용 유한요소해석 코드인 NISA프로그램을 이용하여 열응력 해석을 수행하였다 해석 결과 처분용기에 가해지는 심지층 지하수압 및 벤토 나이트 버퍼의 팽윤압에 추가하여, 고온의 내부 핵연료다발에 의한 열하중이 작용하더라도 처분용기의 내부 주철삽입물에 발생하는 응력은 주철의 항복응력 보다 여전히 작아 처분용기는 구조적으로 안전함이 확인되었다

공동주택 지하주차장의 누수원인 분석 및 보수방안 검토 (Analysis of the Cause of Waterleakage in Residential Apartment Underground Parking Ground and the Review of the Repare Methods)

  • 오상근;최성민;송제영
    • 한국건설순환자원학회논문집
    • /
    • 제2권3호
    • /
    • pp.255-264
    • /
    • 2014
  • 본 연구에서는 공동주택의 주요 하자발생 부위인 지하주차장을 대상으로 부위별 누수원인과 보수방안에 대하여 검토하였다. 지하 1층 상부 슬래브의 누수 원인은 슬래브 상부에 조경과 같은 중량물이 설치되고, 공사 중 혹은 기타 요인에 의한 구조물 거동 시 바탕면에 균열이 발생됨에 따라 방수층이 이에 대응하지 못하고 파단되어 누수가 발생된 것으로 판단된다. 보수로는 합성고무계 폴리머 겔을 사용한 방수층 재형성 공법이 안정적이라 판단된다. 층간 슬래브의 경우 수팽창성 아크릴주입재를 사용하여 보수하며, 그 밖에 차량 진출입구는 시트+겔을 복합화한 복합방수와 폴리우레아 시공이 안정적이라 판단된다. 기초바닥과 지하외벽은 지하수의 수압(양압력)이 가해지는 부위로써 일반적으로 합성고무계 폴리머겔을 이용한 배면보수가 효과적이지만 수압이 높아 차수층 형성이 요구되는 시공구간에 대해서는 무수축 시멘트 밀크 그라우트재로 차수막을 형성시킨 후 구조체의 균열부에 수팽창성 아크릴재로 주입보수하는 것이 효과적이라 판단된다.

심층 처분 시설의 수리 역학적 해석을 통한 벤토나이트 버퍼의 역학적 영향 인자 중요도 평가 (A Coupled Hydro-Mechanical Analysis of a Deep Geological Repository to Assess Importance of Mechanical Factors of Bentonite Buffer)

  • 전윤수;이승래;김민섭;전준서;김민준
    • 터널과지하공간
    • /
    • 제29권6호
    • /
    • pp.439-455
    • /
    • 2019
  • 완충재는 심지층 고준위 방사성 폐기물 저장소의 주요 구성 요소이다. 벤토나이트는 높은 열전도율과 낮은 수리투과성의 특성으로 완충재의 핵심 구성 요소로 다수의 국가에서 채택되었다. 심층 처분은 지하수 유입을 일으키고 이는 완충재 및 뒷채움재의 팽윤압을 초래한다. 완충재에서 발생하는 고압의 팽윤압은 처분용기에 영향을 줄 수 있기에 정밀한 완충재의 팽윤압 예측은 안전한 처분 시스템 구축에 있어서 필수적이다. 따라서 본 연구에서는 MX-80 벤토나이트의 수리역학적 거동에 대한 팽윤압 예측 모델을 세우고, 그 결과를 토대로 민감도 분석을 시행하였다.

심지층 고준위폐기물 처분용기에 대한 설계요구조건 및 구조안전성 평가기준 (Structural Design Requirements and Safety Evaluation Criteria of the Spent Nuclear Fuel Disposal Canister for Deep Geological Deposition)

  • 권영주;최종원
    • 방사성폐기물학회지
    • /
    • 제5권3호
    • /
    • pp.229-238
    • /
    • 2007
  • 본 논문에서는 고준위폐기물 처분용기를 지하 심지층에 처분하기 위하여 요구되는 구조설계 요구조건과 구조안전성 평가 기준을 도출하였다. 고준위폐기물은 높은 열과 많은 방사능을 방출하기 때문에 고준위폐기물을 넣어 보관하는 처분용기는 그 취급에 많은 주의가 요구된다. 이를 위하여 고준위폐기물 처분용기는 장기간(보통 10,000년 동안) 안전한 장소에 보관되어야 한다. 보통 이 보관 장소는 지하 500m에 위치한다. 지하 깊은 화강암에 고준위폐기물을 보관하도록 설계되는 처분용기는 내부주철삽입물과 이를 감싸고 있는 부식에 강한 와곽쉘, 위 덮개와 아래 덮개로 구성되는 구조로 되어 있으며 지하수압과 벤토나이트 버퍼의 팽윤압을 받는다. 따라서 고준위폐기물 처분용기는 심지층에 보관 시 이들 외력들을 견디도록 설계되어야 한다. 만약에 발생 가능한 모든 하중조합을 고려한 처분용기 설계가 되지 않으면 심지층에 위험한 고준위폐기물 처분 시에 처분용기에 소성변형이나 크랙 또 좌굴같은 구조적 결함이 발생할 수 있다. 따라서 심지층에 처분용기를 처분 시에 처분용기에 발생하는 구조적 문제들이 발생하지 않게 하기 위하여 여러 가지 구조해석이 수행되어야 한다. 이러한 구조해석 수행에 앞서 처분용기 설계 타당성을 평가하기 위한 기준이 필요하다. 또한 평가기준에 영향을 미치는 설계요구조건(설계변수)이 명확히 검토되어야 한다. 따라서 본 논문에서는 처분용기의 구조설계 요구조건(설계변수)과 구조 안전성 평가기준을 도출하고자 한다.

  • PDF

Analyses on Thermal Stability and Structural Integrity of the Improved Disposal Systems for Spent Nuclear Fuels in Korea

  • Lee, Jongyoul;Kim, Hyeona;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • 방사성폐기물학회지
    • /
    • 제18권spc호
    • /
    • pp.21-36
    • /
    • 2020
  • With respect to spent nuclear fuels, disposal containers and bentonite buffer blocks in deep geological disposal systems are the primary engineered barrier elements that are required to isolate radioactive toxicity for a long period of time and delay the leakage of radio nuclides such that they do not affect human and natural environments. Therefore, the thermal stability of the bentonite buffer and structural integrity of the disposal container are essential factors for maintaining the safety of a deep geological disposal system. The most important requirement in the design of such a system involves ensuring that the temperature of the buffer does not exceed 100℃ because of the decay heat emitted from high-level wastes loaded in the disposal container. In addition, the disposal containers should maintain structural integrity under loads, such as hydraulic pressure, at an underground depth of 500 m and swelling pressure of the bentonite buffer. In this study, we analyzed the thermal stability and structural integrity in a deep geological disposal environment of the improved deep geological disposal systems for domestic light-water and heavy-water reactor types of spent nuclear fuels, which were considered to be subject to direct disposal. The results of the thermal stability and structural integrity assessments indicated that the improved disposal systems for each type of spent nuclear fuel satisfied the temperature limit requirement (< 100℃) of the disposal system, and the disposal containers were observed to maintain their integrity with a safety ratio of 2.0 or higher in the environment of deep disposal.