• Title/Summary/Keyword: underground transmission system

Search Result 183, Processing Time 0.025 seconds

A Study on the Optimum Cooling Condition of the Underground Power Transmission Cable Equipped with a Separate Pipe Cooling System (간접냉각이 이용된 지중송전케이블의 적정냉각조건에 관한 연구)

  • Park, M.H;Che, G.S.;Seo, J.Y.;Kim, J.G.;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.263-276
    • /
    • 1992
  • The transmission current in a power cable is determined under the condition of separate pipe cooling. To this end, the thermal analysis is conducted with the standard condition of separate pipe cooling system, which constitutes one of the underground power transmission system. The changes of transmission current in a power cable with respect to the variation of temperatures and flow rates of inlet cooling water as well as the cooling spans are also determined. As a consequnce, the corresponding transmission current is shown to vary within allowable limit, resulting in the linear variation of the current for most of the cable routes. The abrupt changes of current, however, for the given flow rate of inlet cooling water in some cooling span lead to the adverse effects on the smooth current transmission within the underground power transmission system. In practice, it is expected that the desinging of the separate pipe cooling system in conjunction with the evaluation of system capacity should take into account the effects of design condition on the inlet cooling flow rate.

  • PDF

A Study on the Variation of the Transmission Capacity by External water Cooled System with Trough in Tunnel (전력구트라프내간접수냉방식에서의 송전용량 변화에 관한 연구)

  • 박만흥;조규식;김재근;서정윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.445-458
    • /
    • 1992
  • As one of the forced cooling method of the underground power transmission system, external water cooled system with trough in tunnel was investigated. This study is performed on thermal analysis for a standard condition to determine the cable transmission current of the underground power transmission system about the cooling facility. A parametric study was performed for the inlet water temperatures, flow rates, the inlet air velocities, flow rates and the cooling spans. This study shows that the cable transmission current varies within the allowable limitation in compliance with the variation of inlet water temperatures and flow rates. It exhibits little variations for the most intervals in compliance with the variation of inlet air temperatures and flows. But, the cable transmission current fast reduces for a specified interval and consequently affects the underground transmission system. As a result, when the actual forced cooling system is designed, the design conditions of inlet air have to be considered as the most important parameters in determination of the cable transmission current.

Analysis of Effect on the Transient State According to Common Grounding between Underground Transmission Systems and Distribution Systems (지중송전 및 배전계통의 공통접지에 따른 과도상태 영향 분석)

  • Lim, Kwang-Sik;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.740-741
    • /
    • 2007
  • This paper analyses the transient state of underground distribution system against single line to ground fault in underground transmission systems, when underground transmission systems and distribution systems are made of common grounding. Underground transmission systems and distribution systems are modeled by EMTP/ATPDraw. Simulation is carried out considering variation of parameters such as value of common grounding, balance load and unbalance load.

  • PDF

A Study on the Introduction of Superconducting Cable in Korean Power System (초전도 케이블 계통 적용을 위한 계통 구성 방안 및 적용 대상 고찰)

  • 김종율;윤재영;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • Nowadays, As power demand increases gradually, the call for underground transmission system increases. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS cable has the several useful characteristics such as increased power density, stronger magnetic fields and/or reduced losses. Therefore HTS cable can allow more power to be moved in existing ducts, which means very large economical and environmental benefits. In this paper, we investigate the status of korean power system and underground transmission system. Based on this, the feasibility study on applying HTS cable to korean power system is carried out and then we propose the new power system configuration of metropolitan area with HTS cable. Finally, we can get a conclusion that applying HTS cable to 154kV underground transmission line in metropolitan area such as seoul is very available. In addition, detail applicable cases are investigated; a)replace old conventional cable with HTS cable; b) apply HTS cable to constructing new underground transmission line; c)use HTS cable to resolve overload problem in conventional power system configuration.

A Study on Fault Location Using Wavelet in 154kV Transmission Power Cable (154kV 지중송전케이블에서 Wavelet을 이용한 Fault Location에 관한 연구)

  • Lee, Jun-Sung;Lee, Jong-Beom;Moon, Sung-Chall
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.437-439
    • /
    • 2000
  • This paper describes a fault location technique using wavelets in underground transmission cable system Estimation of fault location is performed using data sampled at two ends of underground system. In the case of 50% fault of total underground transmission line, fault location is calculated using sampled single-end data in underground transmission line. Traveling wave is utilized in capturing the travel time of the transients along the monitored lines between the relay and the fault point. This travel time information is provided by the wavelet. Simulation was performed using EMTP. ATP Draw and MATLAB. The results of fault location shown in this paper will be evaluated as an effective suggestion for fault to location in real underground transmission line.

  • PDF

A Study on Fault Location Using Wavelet in 154kV Transmission Power Cable (154kV 지중송전케이블에서 Wavelet을 이용한 Fault Location에 관한 연구)

  • Lee, Jun-Seong;Mun, Seong-Cheol;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.608-613
    • /
    • 2000
  • This paper describes a fault location technique using wavelets in underground transmission power cable system. Estimation of fault location is performed using data smapled at two ends underground system. In the case of 50% fault of total underground transmission line, fault location is calculated using sampled single-end data in underground transmission line. Traveling wave is utilized in capturing the travel time of the transients along the monitored lines between the relay and the fault point. This traveling time information is provided by the wavelet. Simulation was performed using EMTP, ATP Draw and MATLAB. The results of fault location shown in this paper will be evaluated as an effective suggestion for fault location in real underground transmission line.

  • PDF

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

A Study on the Fault Discrimination and Location Algorithm in Underground Transmission Systems Using Wavelet Transform and Fuzzy Inference (지중송전계통에서 Wavelet 변환과 퍼지추론을 이용한 고장종류판별 및 고장점 추정에 관한 연구)

  • Park, Jae-Hong;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.116-122
    • /
    • 2006
  • The underground transmission lines is continuously expanded in power systems. Therefore the fault of underground transmission lines are increased every year because of the complication of systems. However the studies dealing with fault location in the case of the underground transmission lines are rarely reported except for few papers using traveling wave method and calculating underground cable impedance. This paper describes the algorithm using fuzzy system and travelling wave method in the underground transmission line. Fuzzy inference is used for fault discrimination. To organize fuzzy algorithm, it is important to select target data reflecting various underground transmission line transient states. These data are made of voltage and average of RMS value on zero sequence current within one cycle after fault occurrence. Travelling wave based on wavelet transform is used for fault location. In this paper, a variety of underground transmission line transient states are simulated by EMTP/ATPDraw and Matlab. The input which is used to fault location algorithm are Detail 1(D1) coefficients of differential current. D1 coefficients are obtained by wavelet transform. As a result of applying the fuzzy inference and travelling wave based on wavelet transform, fault discrimination is correctly distinguished within 1/2 cycle after fault occurrence and fault location is comparatively correct.

Reduction Methods of Sheath Circulating Current in Underground Cable (지중 송전선로에서 시스 순환전류 저감 방안)

  • Ha, C.W.;Kim, J.N.;Lee, S.K.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.175-177
    • /
    • 2002
  • The use of underground transmission cables has increased continuously in densely inhabited urban and suburban for power transmission. Two or more transmission lines are outgoing from one substation in many cases, and one line comprises twin circuits. In order to meet the increasing do and for electric power, underground tables of two or fore circuits are installed in ducts in parallel for several kilometer in the same route. It, however, has not been known generally that the sheath circulating current is generated in a system where a large number of cables are laid on the same route. Therefore, this paper describes an improved analysis method for sheath circulating current on underground transmission cables using EMTP. Author propose several methods to reduce sheath circulating current. The analysing method and reduction methods for two or more underground cables will be really improved for cable system utility.

  • PDF

The first installation of long-distance underground transmission line with 345kV XLPE Cable in Korea (장거리 345kV XLPE 케이블 지중송전선로의 준공)

  • Shin, H.D.;Park, K.R.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.376-378
    • /
    • 2003
  • Since the first underground transmission line of Korea was installed between Danginri and Yongsan substations in 1974, the two types of underground transmission power cables, oil-filled and XLPE, have been applied for underground transmission lines. As the manufacturing technologies of XLPE cable have been improved and the simplicity of installation and maintenance has been focused on, the installations of XLPE cables have been largely increased since the mid 1990's. For the first time, in Korea, the 345kV XLPE cable was installed between Youngseo and Youngdeungpo substations in 2003, June. So, this paper introduces the project profile, the design of cable and its accessory, the cable system design, installation and site test.

  • PDF