• Title/Summary/Keyword: underground pot

Search Result 15, Processing Time 0.01 seconds

Selection of Tolerant Plant Species using Pot Culture for Remediation of Explosive Compounds Contaminated Soil (포트 재배에 의한 화약물질 오염토양 정화용 내오염성 식물 선정)

  • Lee, Ahreum;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.73-84
    • /
    • 2015
  • Nine plant species were selected through vegetation survey at three military shooting ranges at northern Gyeonggi Province. Plants were germinated in normal soil and three seedlings were transplanted to a bottom sealed pot containing sandy loam soils contaminated with either RDX (291 mg/kg) or TNT (207 mg/kg). Planted, blank (without plant), and control (without explosive compound) pots were grown in triplicate at a green house for 134 days. During cultivation, transplanted plants exhibited chlorosis and necrosis in flower and leaf by explosive toxicity and stress. Only three plants, Wild soybean, Amur silver grass, Reed canary grass, survived in TNT treated pot, while seven plant species except for field penny cress and jimson weed, thrived in RDX treated pot. Appreciable amount of TNT (61.6~241.2 mg/g-D.W.) was detected only in plant roots. Up to 763.3 mg/g-D.W. along with 4-amino-2,6-dinitrotoluene, an intermediate of TNT, accumulated in the root of wild soybean. In addition, azoxy compounds, abiotic intermediates of TNT, were detected in TNT treated soils. RDX absorbed average 1,839.95 mg/kg in shoot and 204.83 mg/kg in root. Most of TNT in plant was accumulated in underground part whereas RDX was localized in aerial part. Material balance calculation showed that more than 95% of the initial TNT was removed in the planted pots whereas only 60% was removed in the blank pot. The amount of RDX removed from soil was in the order of Amur Silver Grass (51%) > Chickweed (43%) > Evening primrose (38%). Based on the results of pot cultures, Amur silver grass and Reed canary grass are selected as tolerant remedial plants for explosive toxicity.

Effect of Space Limitation of Rhizosphere on Morphology and Development of Root System in Tobacco Seedlings (담배 육묘시 근권의 공간 제한이 근계의 형태와 발달에 미치는 영향)

  • 이상각;심상인;강병화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.475-481
    • /
    • 1996
  • This study was carried out to acquire the basic information of root growth under different pot size, imposing different space limitation on rhizosphere. Different size of pots that had same surface area but different depth, 5cm(Iength)$\times$5cm(width)$\times$30, 15, 5cm(depth), were used during the seedling stage of tobacco plant. Space limitation on rhizosphere affected not only the aerial growth, stem height, leaf area and shoot dry weight, but also root growth and root architecture. Aerial growth was highly related to growth of underground part, so space limitation on rhizosphere decreased aerial growth. Limitation on pot volume by reducing pot depth induced new rooting on crown. Root number and relative multiplication rate were higher in small pot that had 5cm depth than large pot, but total root length and mean extension rate showed reverse patterns. Root numbers of 1st order and 2nd order were increased as pot depth was increased, but the root number of 3rd order was increased in small pot. Root system of seedling grown in large pot distributed more horizontally than that in small pot at 20 days after temporary planting (DAT), but the root architecture of seedling was reversed at 25 DAT.

  • PDF

A Study on the Effect of Irrigation Water Temperature to the Growth and Harvest of Paddy Rice in Various Water Sources (수원별 관개용수의 수온이 수함생육과 수량에 미치는 영향에 관한 연구)

  • 조형용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2634-2648
    • /
    • 1972
  • The aim of this Study is to bring Light on the effect of irrigation water temperature to the growth and harvest of Paddy rice in Various water Sources. 1. This research was completed in the writer's home nursery garden Located in Chungyoung-Ri, Hoeng sung-Myun, Hoengusung-Konn, Kangwan-Do. 2. The variety of Paddy rice was the IR667. 3. Practice was done by the treatment I .e river water, reservoir, tube well cold and tuke well warm with 3 riplications each. 4. The Paddy was transplanted in a pot 0.9 meter height and 1 meter Square without hottom filled with paddy soil to a planting depth 0.5 meter. The pot was laid underground and Covered with a film of polyethylene to keep of the rain. 5. The method of Cultivation was that used by the Filed Crops Experiment Station of the Office of Rural Development. 6. Atmospheric temperature was recorded every day of the growing period. The precipitation and Sun light was quoted by the KF-46 of Hoengsung. 7. The Soils in the test plots was relatively fortile, being Similar to ordinary paddy soils. 8. The charactor of irrigation water of surface and underground was both normal. 9. During the period of growth the average temperature of the underground water as $14.2^{\circ}C$ and that of the Surface was $24.1^{\circ}$. 10. The most useful water for the rice growing was that of river and reservoir while underground water was found to be generally injurious to the paddy growth because of low temperature. 11. In the case of underground water, there proved to be such harmful effects as reduction of culm length, rate of mature grain, panicle Length and grain weight and delay of tillering time, and heading time. Reading Therefore the writer conduded that the harvest of rice irrigated with underground water Showed a reduction of 15.8% compered with the rice irrigated by surface water.

  • PDF

Influence of Nitrogen Level on the Accumulation of NO3- on Edible Parts of Chinese Cabbage, Radish and Cucumber (질소시비량(窒素施肥量)이 배추, 무우 및 오이의 가식부위내(可食部位內) NO3- 집적(集積)에 미치는 영향(影響))

  • Sohn, Sang-Mok;Oh, Kyeong-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.10-19
    • /
    • 1993
  • This study reports the influence of nitrogen application on the yield and the accumulation of $NO_3{^-}$ in edible parts of major vegetables in a pot experiment treated with five levels(0, 1, 2, 4, 8g N/pot) of nitrogen. In the $NO_3{^-}$ accumulation of chinese cabbage the outer leaf were superior to the inner leaf. The $NO_3{^-}$ contents of the midrib in outer and inner leaf were higher than those of the leaf blade. By increasing the nitrogen application, the accumulationsgap in $NO_3{^-}$ accumulation between midrib and leaf blade in a leaf, became larger. The difference ratio of $NO_3{^-}$ accumulation in the outer leaf reached 4.8:1 at 8g N/pot treatment. In theradish, the $NO_3{^-}$ accumulation in the aerial root parts is higher than those of the underground root parts, and it is higher in the leaf than in the petiole. The accumulation of $NO_3{^-}$ in sarcocarp of cucumber was increased along with the added amount of nitrogen, but contents of $NO_3{^-}$ in the core of the cucumber showed no differences in the treatment levels. The $NO_3{^-}$ accumulation differences of outer sarcocarp vs. inner core parts in cucumber was increased along with the higher nitrogen levels, and its difference ratio of $NO_3{^-}$ accumulation reached 13.1:1 at 8g N/pot treatment. The highest $NO_3{^-}$ accumulation in edible parts of chinese cabbage, radish and cucumber were found at the 8g N/pot treatment, and were 3,664ppm in the outer leaf midrib of chinese cabbage, 3,449ppm in the aerial part of root of radish, and 484ppm in sarcocarp part of cucumber. Compared with the control each 130 times, 40.8 times, 20.9 times, respectively. There are positive correlation coefficients between the amount of nitrogen fertilization, $NO_3{^-}$ accumulation in the edible parts, yield, and yield components of edible parts.

  • PDF

Effect of Seeding Epth on Severity of Damping-off Ginseng Seedlings Caused by Rhizoctonia solani (번종 깊이가 인삼의 모잘록병 발생에 미치는 영향)

  • 유연현;조대휘
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.432-436
    • /
    • 1990
  • Incidence of damping-off callsed by Rhizoctonia solani was 0.6-10.9% at "Yangjik" seedbed in Pocheon, Korea. The seedbeds where the lengths of etiolated stems (underground portion) of ginseng seedlings were 0.78-1.25 cm showed 0.8-3.2% of the disease, while 6.9-10.9% disease incidence was observed at the seedbeds with the longer etiolated stem (1.89-2.26 cm). The pathogen produced a typical girdle symptom on the etiolated portion of ginseng stems close to the soil surface. The deeper the seeds were sown, the more the disease occurred in pot soil inoculated with the pathogen, AG 2-1, showing 18.4, 27.4 and 32.9% of damping-off at the seeding depth of 1, 2 and 4 cm, respectively. Cuticle layers of colored stems (over ground portion) were well - developed to be 42.8, 58.0, and 55.0 um in thickness compared to the etiolated stems with 8.5, 15.0 and 8.0um for seedling, 2 year-old, and 3 year-old ginsengs, respectively, when the disease occurred. In the seedling and 2 year-old ginseng, the colored stems were more rigid than the etiolated. There was however, no difference in rigidness of the stem of the 3 year-old ginseng where the disease is not severe as in seedlings and 2 year-old ginseng plants.ng plants.

  • PDF

Effects of Simulated Acid Rain on Growth and Contents of Chemical Substances in Needles of Pinus koraiensis Seedlings and on Chemical Properties of the Tested Soil (인공산성우(人工酸性雨)가 잣나무 유묘(幼苗)의 생장(生長), 엽내함유성분(葉內含有成分) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Cheong, Yong Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • Simulated acid rain (pH 4.0, pH 2.0) containing sulfuric and nitric acid in the ratio of 60:40 (chemical equivalent basis) diluted with underground water, and underground water (pH 6.5) as control were treated on potted Pines koraiensis seeds during the growing season (May 1 to August 31) in 1985. The regime of artificial acid rain, in terms of spray frequency and amount per plot, was simulated on the basis of climatological data averaged for 30 years of records. The seedling growth, contents of chemical substances in needles and chemical properties of the tested soil were compared among the various pH levels of acid rain on October 31, 1985. Following results were obtained. 1. With decreasing pH levels of acid rain, S and $K_2O$ contents in leaf tissue were increased, but MgO and $P_2O_5$ contents were decreased. 2. Soil pH was dropped, and exchangeable aluminum content in the tested soil was dramatically increased as the pH levels of acid rain decreased. 3. Exchangeable calcium, magnesium, potassium contents, and base saturation degree of the soil were significantly decreased with decreasing pH levels of acid rain. 4. Sulfate concentrations in the soil were significantly increased as rain pH decreased, but total nitrogen and available phosphate contents were not influenced by acid rain.

  • PDF

Optimization of Siderophore Production by Bacillus sp. PZ-1 and Its Potential Enhancement of Phytoextration of Pb from Soil

  • Yu, Sumei;Teng, Chunying;Bai, Xin;Liang, Jinsong;Song, Tao;Dong, Liying;Jin, Yu;Qu, Juanjuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1500-1512
    • /
    • 2017
  • In this study, the siderophore-producing characteristics and conditions of Bacillus sp. PZ-1 were investigated and the enhancement of siderophores on Pb uptake and translocation in Brassica juncea were determined. Results of single factor experiment showed that glucose, pH, and $Pb(NO_3)_2$ could stimulate PZ-1 growth and siderophore production. The maximum siderophore production of 90.52% siderophore units was obtained by response surface methodology optimization at the glucose concentration of 21.84 g/l, pH 6.18, and $Pb(NO_3)_2$ concentration of $245.04{\mu}mol/l$. The type of siderophore was hydroxamate and its concentration in the fermentation broth amounted to $32.24{\mu}g/ml$. Results of pot experiments indicated that the siderophores enhanced B. juncea to assimilate more Pb from soil with the uptake ratio from 1.04 to 2.74, and to translocate more Pb from underground to overground with the TF values from 1.21 to 1.48. The results revealed that Bacillus sp. PZ-1 could produce abundant siderophores and might be potentially used to augment the phytoextraction of Pb from soil.

Effect of Water Table Depth in Different Soil Texture on Quality of Barley and Wheat Grain (토성별 지하수위가 밀, 보리의 품질에 미치는 영향)

  • 이홍석;구자환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.278-284
    • /
    • 1995
  • This experiment was performed to characterize the optimum water table level for the grain quality, seed germination and diastic power of barley(var. Olbori) and wheat(var. Grumil). Olbori and Grumil grew in the 550 liter plastic pot that filled with silt loam or sandy loam. During the whole growth period, the underground water level adjusted to be 20, 30, 40, 50 and 70cm. Filled grain ratio and specific gravity were not affected by soil texture and water table. Low level of water table caused the increase of 1,000 grain weight in wheat and barley, but soil texture didn't. Crude protein content tended to be high as the water table level was high, especially in wheat. Change in crude protein content was affected by underground water level more than soil texture. And the affection was slightly higher in sandy loam than silt loam, but the difference was small. The higher level of water table led to the lower crude lipid content in barley and wheat grain. Crude lipid content of both wheat and barley grain grown in sandy loam was higher than those grown in silt loam. As the water table level down, the ash content of barley and wheat grain tend to increase, especially in sandy loam. Wheat flour yield was not affected by soil texture. It was about 65% at 20cm of water level and above 67% at 40cm water level. The seed germination of wheat and barley was more than 95% when the seeds were placed at 2$0^{\circ}C$ for three days. Regardless of soil texture, the lowest germination was seen at 20cm of water table level. And the seed germination rate increased as the underground water level became low. Above 89% of barley grains were germinated within 48 hours except 20cm level of water table in sandy loam. Diastic power of germinated barley was the lowest at 20cm of water table level, and it was almost unchanged below 30cm of water table level. And also it was not affected by soil texture.

  • PDF

Phenology and Population Dynamics of Scirpus fluviatilis (Torr.) A. Gray in the Littoral Zone of the Upo Wetland (우포늪 연안대에서 매자기의 화력학과 개체군 변화)

  • Seo, Hye-Ran;Park, Sang-Yong;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.49-59
    • /
    • 2009
  • Seasonal changes of the growth characteristics and biomass of Scirpus fluviatilis, a aquatic emergent vascular plant, were investigated to reveal the phenology and the population dynamics and to provide the fundamental resources for the restoration counterplan of the wetland vegetation in the littoral zone of the Upo wetland, Changnyeong-gun, Gyeongsangnam-do, Korea from March 2006 to November 2006. Scirpus fluviatilis was distributed commonly in Upo, Mokpo, Sajipo, Jokjibyeol, and Topyeongcheon upstream and downstream of Upo wetland, and the density was highest in Mokpo. Distribution range for the water depth was 9~49cm, and the highest shoot density in 26~49cm, and the mean shoot density was $119/m^2$, and the mean shoot length was 122.3cm on May 28. The number of the tuber was $104.5/0.25m^2$, and the living tubers were 84.2%. The mean fresh biomass of the living tubers was 3.0g, and those of 1~4g was most as 57.9%. Germination rates of the living tubers was 43.8%, and the maximum rate was in 7~9g and more than 10g. In the pot cultivation, the shoot density of the germinated tubers and the dormant tubers were highest as 13.5 and 9.7, respectively in early August. In the field study, the shoot density had few change before typhoon damage, while the density increased abruptly in November after flooding accompanied with the typhoon 'Ewiniar'. The shoot length in the pot cultivation and in the field study were 100~116cm and 60~170cm, respectively in the growth-end. Biomass allocation rates into the stem, leaf, flower, and underground parts were 8.9%, 6.6%, 0%, and 84.5%, respectively in the pot cultivation of the germinated tubers, and those of the dormant tubers were 7.1%, 7.1%, 0%, and 85.8%, respectively. The tuber number increased to 1.4~4.1 times by the growth-end, so it is concluded that Scirpus fluviatilis is mostly propagated by the vegetative reproduction.

  • PDF

Anastomosis Group, Pathogenicity and Growth Characteristics of Rhizoctonia solani Causing Damping-off on Panax ginseng (인삼 잘록병균 Rhizoctonia solani의 균사융합군과 병발생 및 생육 특성)

  • Cho, Dae-Hui;Kang, Je Yong;Yu, Yun-Hyun
    • Journal of Ginseng Research
    • /
    • v.28 no.4
    • /
    • pp.183-190
    • /
    • 2004
  • On May of 2002, the 34 isolates of Rhizoctonia solani were isolated from the symptom of damping-off on basal stems of 2-year-old to 6-year-old Panax ginseng which were cultivated in the 17 fields in Kyunggi-do, Chun­gcheungnam-do and Jeollabuk-do province in Korea. All isolates were identified as anastomosis group 2-1. Pre-emer­gence damping-off occurred on underground part of stem of 2-year-old ginseng in the pot trial with artificial inoculation. However, in the 4-year-old ginseng field with artificial inoculation, post-emergence damping-off occurred. The severe incidence of damping-off was found in the 6-year-old ginseng field in Kimje-si, Jeollabuk-do province on June 5 of 2003, the rate of which showed $18.6{\%}$ of area in the field by spread of the disease since 2-year-old. The sclerotia of R. solani, started to be formed after 7 days incubation on potato dextrose agar at $25^{\circ}C,$ were grayish brown, spherical to irregular and about $500{\mu}m$ in diameter, which became dark brown after 14 days incubation. The temperature range for the myce­lial growth of R. solani isolates was $5\~30^{\circ}C,$ and the optimal temperature was $25^{\circ}C,$ their growth were very poor at $5\;or\;30^{\circ}C$. The isolates grew at the range of pH $4.5\~8.1$ tested and optimal pH for growth was pH 4.5$\~5.8%, whereas their growth were very poor above the pH 7.2.