• 제목/요약/키워드: underground mine

Search Result 268, Processing Time 0.02 seconds

Stability Analysis of Discontinuous Rock by the Block Theory (블록이론에 의한 불연속성 암반내 터널의 안정성 해석)

  • 양형식
    • Tunnel and Underground Space
    • /
    • v.1
    • /
    • pp.66-74
    • /
    • 1991
  • The block theory with stereographic projection was applied and analyzed on the tunnel section of Samcheok Coal Mine. The results were as follows ; 1) Prevail orientations of discontinuity of sandstone around the main driftway of Samcheok Coal Mine were $(327^{\circ},\;44^{\circ}),\;(13^{\circ},\;24^{\circ}),\;(204^{\circ},\;65^{\circ})$ and $(225^{\circ},\;77^{\circ})$ in dip and dip direction, respectively. 2) Movable blocks of the site were 0110, 0111, 1110(roof), 0100, 0110, 1110(right wall) and 0001, 1001, 1011(left wall). Because of the direction of tunnel, blocks of the left wall was safe. thus key blocks were those of the roof and the right wall. Maximum height of key block was larger than the width of the tunnel but 2m of the yielded zone is expected in general for 5m width tunnel. 3) It is shown that block theory is applicable to large cavern in hard rock analysis.

  • PDF

A Retrospective Comparative Study of Serbian Underground Coalmining Injuries

  • Ivaz, Jelena S.;Stojadinovic, Sasa S.;Petrovic, Dejan V.;Stojkovic, Pavle Z.
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.479-489
    • /
    • 2021
  • Background: During 2011, a study was undertaken to assess safety conditions in Serbian underground coalmines by analysis of injury data. The study covered all Serbian coalmines, identified week spots from the aspect of safety, and recommended possible courses of action. Since then, Serbia has made changes to safety and health legislation; all coalmines introduced new preventive measures, adopted international standards, and made procedures for risk management. After 10 years a new study has been performed to analyze the impact of these changes. Materials and methods: In this study, the injuries that have occurred in the Serbian underground coal mines over the last 20 years were analyzed. Statistical data analysis was performed by IBM SPSS Statistics v23. The injuries that occurred in the last ten years were compared with the results of the previous study (2000-2009). The average values of injury rates for both periods were compared for each of the categories (severity, age, body part, qualification), and the results were presented as absolute difference or percentile difference. Results: The results showed reduction in the number of injuries in the category of 20-30 years old workers, where the new training procedures for workers, which were set by mandatory legal regulations, certainly contributed. They also showed an increase in the number of injuries in the category of old workers, which indicates that the law did not have a positive effect on this category. Conclusion: The total number of injuries is still high; therefore, it is necessary to introduce mechanization and automation in mines and have a better policy for older workers who retire later nowadays.

Study on bearing characteristic of rock mass with different structures: Physical modeling

  • Zhao, Zhenlong;Jing, Hongwen;Shi, Xinshuai;Yang, Lijun;Yin, Qian;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-194
    • /
    • 2021
  • In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) × 1000 mm (length) × 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.

Construction of Precise Mine Geospatial Information and Ore Modeling for Smart Mining (스마트마이닝을 위한 정밀 광산공간정보 구축 및 광체 모델링)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.725-731
    • /
    • 2020
  • In mineral resource development, resource exploration is a task to find economical minerals on the surface and underground, and the success rate is low compared to the development and production stages, and it is necessary to collect a lot of data through exploration and accurately analyze the collected information. In this study, mine spatial information was constructed using a 3D (Three-dimensional) laser scanner, and accuracy evaluation was performed to obtain a maximum deviation of 0.140 m and an average of 0.095 m in the X, Y and Z directions, and the possibility of utilizing the construction of mine geospatial information through a 3D laser scanner could be presented. In addition, the ore body modeling was performed by applying the interpolation method of the ore body section using the resource exploration results. The ore body modeling result was superimposed with the modeling result of the mine geospatial information built through the 3D laser scanner to construct the ore body modeling result based on the precise mine geospatial information. The results of ore body modeling based on mine geospatial information built through research can increase the ease of data interpretation and the accuracy of the calculated data, which will greatly increase the efficiency of work related to mineral resource development and mine damage prevention in the future.

Development of Tip Device for Hydraulic Filling Efficiency Improvements (수압식 충전의 효율 향상을 위한 선단장치 개발에 관한 연구)

  • Yu, Sung-Kon;Kim, Tae-Heok;Shin, Dong-Chun
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.403-411
    • /
    • 2012
  • In recent, the using of the hydraulic filling method has increased on the underground reinforcement of the abandoned mine in Korea, however it is the lack of research on the efficient filling method. In this study, tank model tests and field tests were conducted for development of tip device for filling efficiency improvements on the hydraulic filling method. In tank model experiments, the filling efficiency was evaluated according to the form and angle of the nozzle on tip device in the same condition. Then tip device model designed by tank model tests was applied to the field experiment. As a result, the amount of filling of nozzle $90^{\circ}$ tube is increased by approximately 18% compared to the common vertical injection pipe. The angle of repose was $30.82^{\circ}$. Filling hole spacing in the field is usually designed from 5m up to 10m assumed to be $40^{\circ}$ of the angle of repose. According to the results of this study, it is possible that the filling hole spacing expands at least 10m up to 15m applied to be $30^{\circ}{\sim}35^{\circ}$ of the angle of repose. Therefore, it is expected to be economical and efficient mine filling.

Satellite Radar Interferometry for Mine Subsidence Monitoring

  • Ge Linlin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2005.02a
    • /
    • pp.73-116
    • /
    • 2005
  • [ $\blacksquare$ ] The integration of radar interferometry(InSAR), GIS and GPS can be used as an operational technology to monitor ground deformation due to underground mining, earthquakes, and so on, at sub-centimetre of mm level accuracy; $\blacksquare$ Operational procedures and tools have been developed and tested at UNSW; and $\blacksquare$ We are very keen to promote the technology together with you all.

  • PDF

Size Distributions and Respirable Mass Fractions of Airborne Coal Dust in Underground Coal Mines (일부 석탄광산 기중 부유분진의 입경 분포와 호흡성 분진 비율)

  • Yoon, Young No;Kim, Young Sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.1
    • /
    • pp.62-67
    • /
    • 1991
  • Authors investigated size distributions of airborne mixed coal dust at drillings, coalfaces, and separating sites of underground coal mines in Taebaek, Hwasun, and Jeomchon area by ambient cascade impactors. And Respirable mass fractions were calculated from the size distributions by the ACGIH criteria.

  • PDF

Applications of BOTDR fiber optics to the monitoring of underground structures

  • Moffat, Ricardo A.;Beltran, Juan F.;Herrera, Ricardo
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.397-414
    • /
    • 2015
  • Three different applications for monitoring displacements in underground structures using a BOTDR-based distributed optical fiber strain sensing system are presented. These applications are related to the strain measurements of (1) instrumented PVC tube designed to be attached to tunnel side wall and ceiling as a sensor; (2) rock bolts for tunnels; and (3) shotcrete lining under loading. The effectiveness of using the proposed strain sensing system is evaluated by carrying out laboratory tests, in-situ measurements, and numerical simulations. The results obtained from this validation process provide confidence that the optical fiber is able to quantify strain fields under a variety of loading conditions and consequently use this information to estimate the behavior of rock mass during mining activity. As the measuring station can be located as far as 1 km of distance, these alternatives presented may increase the safety of the mine during mining process and for the personnel doing the measurements on the field.

Determination of Critical Slope Height for Large Open-pit Coal Mine and Analysis of Displacement for Slope failure Prediction (대규모 노천 석탄광산의 한계사면높이 결정과 사면파괴 예측을 위한 계측자료 해석)

  • Jung, Yong-Bok;SunWoo, Choon;Lee, Jong-Beom
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.447-456
    • /
    • 2008
  • Open-pit mine slope design must be carried out from the economical efficiency and stability point of view. The overall slope angle is the primary design variable because of limited support or reinforce options available. In this study, the slope angle and critical slope height of large coal mine located in Pasir, Kalimantan, Indonesia were determined from safety point of view. Failure time prediction based on the monitored displacement using inverse velocity was also conducted to make up fir the uncertainty of the slope design. From the study, critical slope height was calculated as $353{\sim}438m$ under safety factor guideline (SF>1.5) and $30^{\circ}$ overall slope angle but loom is recommended as a critical slope height considering the results of sensitivity analysis of strength parameters. The results of inverse velocity analysis also showed good agreement with field slope cases. Therefore, failure of unstable slope can be roughly detected before real slope failure.

A Case Study of Site Investigation and Ground Stability Analysis for Diagnosis of Subsidence Occurrence in Limestone Mine (석회석 광산 지역의 지반침하 원인 규명을 위한 현장조사와 지반 안정성 분석 사례)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Oh, Seok-Hoon
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.332-340
    • /
    • 2015
  • Ground subsidence occurring in mine area can cause an enormous damage of loss of lives and properties, and a systematic survey should be conducted a series of field investigation and ground stability analysis in subsidence area. This study describes the results from field investigation and ground stability analysis in a limestone mine located in Cheongwon-gun, Chungcheongbuk-do, Korea. Rock mechanical measurements and electrical resistivity surveys are applied to obtain the characteristics of in-situ rock masses and the distribution patterns of subsurface weak zone, and their results are extrapolated in numerical analysis. From the field investigation and stability analysis, it is concluded that the subsidence occurrence in this limestone mine is caused mainly by subsurface limestone cavities.