• Title/Summary/Keyword: underground depth

Search Result 657, Processing Time 0.026 seconds

A Study on Detachability Measurement to Buried Target of GPR (GPR의 매설물 검출능력 측정에 관한 연구)

  • 문두열;이용희;신병철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.77-83
    • /
    • 2002
  • Recently, the industrial development caused the expansion of city and the field of construction is being larged in size. So, information of construction buried in underground is necessary. In this paper, we were investigated the detachability on various specimen in self-designed test field using the GPR system with three antenna elements and it was constantly radiated 730 MHz frequency. To examine the detachability on various condition, the test were displayed B-scan CRT. And the pattern was exactly positioned when it was compared to the real buried-depth. Therefore, we can confirm similarity between the wave-propagation velocity and previous results.

(A study failure-strength characteristics of soil layer contained Corestone) (핵석을 포함하는 토층의 파괴강도 특성연구)

  • 이수곤;금동헌
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.711-716
    • /
    • 2002
  • When judging the ground by core-logging, depth of coring might be stopped by coming into view of the moderately weathered rock and also considered as bedrock line. However, highly weathered rock may appear again, if coring more, because there are core-stones in the residual soil and highly weathered rock by the effect of hydraulic-thermal differentiation and does the irregular rock weathering or metamorphic rock region. Therefore, there are room for misunderstanding of diagnosing the moderately weathered rock. Even though the irregular ground where the corestones were come out will show clear geotechnical differences between the ground and the gradually weathered bedrock, nowadays, the construction sites do not take into account the characteristic of core-stone region. In conclusion, to study the failure-strength characteristics of soil layers containing core-stones, we made artificial core-stones and varied percentage of corestones, and measured cohesion and friction factors to adjust them to construction sites containing corestones such as slope, tunnel, and underground.

  • PDF

Effect of Space Limitation of Rhizosphere on Morphology and Development of Root System in Tobacco Seedlings (담배 육묘시 근권의 공간 제한이 근계의 형태와 발달에 미치는 영향)

  • 이상각;심상인;강병화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.475-481
    • /
    • 1996
  • This study was carried out to acquire the basic information of root growth under different pot size, imposing different space limitation on rhizosphere. Different size of pots that had same surface area but different depth, 5cm(Iength)$\times$5cm(width)$\times$30, 15, 5cm(depth), were used during the seedling stage of tobacco plant. Space limitation on rhizosphere affected not only the aerial growth, stem height, leaf area and shoot dry weight, but also root growth and root architecture. Aerial growth was highly related to growth of underground part, so space limitation on rhizosphere decreased aerial growth. Limitation on pot volume by reducing pot depth induced new rooting on crown. Root number and relative multiplication rate were higher in small pot that had 5cm depth than large pot, but total root length and mean extension rate showed reverse patterns. Root numbers of 1st order and 2nd order were increased as pot depth was increased, but the root number of 3rd order was increased in small pot. Root system of seedling grown in large pot distributed more horizontally than that in small pot at 20 days after temporary planting (DAT), but the root architecture of seedling was reversed at 25 DAT.

  • PDF

A Study on the Prevention Effect of Lateral Movement by Finite Element Analysis (유한요소해석에 의한 측방이동 방지효과에 대한 연구)

  • Park, Choon-Sik;Rho, Tae-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.71-82
    • /
    • 2018
  • This study presents a reasonable and economical DCM reinforcement length for the various factors (the embankment height, the distance from the embankment to the underground structure, the depth of the soft ground, and the compression index and the swelling index of the soft ground) that affect the stability of the structure due to lateral movement. Based on these results, we analyzed each factor's degree of influence and figured out which factor influenced the lateral movement most. The cross section of the embankment on the soft ground was modeled by using the Finite Element Program and reinforced with DCM. The results show that the increase rate of the reinforcement length with the increase of the embankment height is about 9~50%, the increase rate of the reinforcement length with the depth of soft ground is about 13~30%, and the increase rate of the reinforcement length with increasing compression index is about 3~25%. In addition, the influence of each factor on each other was analyzed. As a result, among the separation distance, the compressive index and the maximum to minimum slope ratio of the reinforcement length of the embankment height, the separation distance was the largest for the depth of soft ground. As the depth of the soft ground increases, the ratio of the maximum to minimum slope of the reinforcement length according to the embankment height is 3.75, the ratio of the maximum to minimum slope of the reinforcement length according to the spacing distance is 4.3, and the ratio of maximum to minimum slope according to compression index is 2.5. From these results, it is confirmed that the three factors are greatly affected by the depth of soft ground.

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

Analysis of Joint Characteristics and Rock Mass Classification using Deep Borehole and Geophysical Logging (심부 시추공 회수코어와 물리검층 자료를 활용한 절리 및 암반등급 평가)

  • Dae-Sung Cheon;Seungbeom Choi;Won-Kyong Song;Seong Kon Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.330-354
    • /
    • 2024
  • In site characterization of high-level radioactive waste, discontinuity(joint) distribution and rock mass classification, which are key evaluation parameters in the rock engineering field, were evaluated using deep boreholes in the Wonju granite and Chuncheon granite, which belong to Mesozoic Jurassic era. To evaluate joint distribution characteristics, fracture zones and joint surfaces extracted from ATV data were used, and major joint sets were evaluated along with joint frequency according to depth, dip direction, and dip. Both the Wonju and Chuncheon granites that were studied showed a tendency for the frequency of joints to increase linearly with depth, and joints with high angles were relatively widely distributed. In addition, relatively large amounts of weathering tended to occur even in deep depth due to groundwater inflow through high-angle joints. RQD values remained consistently low even at considerable depth. Meanwhile, joint groups with low angles showed different joint characteristics from joint sets with high angles. Rock mass classification was performed based on RMR system, and along with rock mass classification for 50 m intervals where uniaxial compressive strength was performed, continuous rock mass classification according to depth was performed using velocity log data and geostatistical techniques. The Wonju granite exhibited a superior rock mass class compared to the Chuncheon granite. In the 50 m interval and continuous rock mass classification, the shallow part of the Wonju granite showed a higher class than the deep part, and the deep part of the Chuncheon granite showed a higher class than the shallow part.

A stability study of deep and double-deck tunnels considering shape and reinforcing method of an enlarged section by using numerical analyses (수치해석을 이용한 대심도 복층터널의 확폭단면 형상 및 보강방법에 대한 안정성 연구)

  • You, Kwang-Ho;Jin, Su-Hyun;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.41-56
    • /
    • 2017
  • Recently, the necessity of deep and double-deck tunnels has been grown day by day due to the increase of traffic volume at metropolitans and thus the study on the divergence of those tunnels becomes required. Therefore sensitivity analyses were conducted with FLAC 2D program by selecting ground condition, coefficient of lateral pressure, support pattern, and depth of rock cover as parameters. Ultimately, this study is to find the optimal shape and support method of a diverged section. As the results of this study, it turned out that the box type gave higher stability of the section than arch type unlike the general thought. It can be explained that the arch type has about 30% bigger excavation area than the box type. When the ground conditions are poor, steel pipe grouting reinforcement gives higher stability than rockbolt reinforcement, but its thickness and range do not give a great influence on the stability of the enlarged section.

Analysis of Influencing Factors on Cavity Collapse and Evaluation of the Existing Cavity Management System (공동 붕괴를 유발하는 영향인자 분석 및 기존 공동관리 시스템 평가)

  • Lee, Kicheol;Park, Jongho;Choi, Byeong-Hyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • In this study, numerical analysis is performed to determine highly influential factors that increase the possibility of asphalt road collapse due to cavity underneath the road. The considered influence factors on road collapse due to underground cavity were the asphalt layer thickness, the cover depth, the cavity width, and the cavity height. The concentrated load and uniform distributed pressure were applied on the top surface of asphalt pavement layers with different shape of cavity and asphalt thickness. For each analysis case of given cavity and asphalt thickness, failure load was analyzed under displacement controlled condition. Based on the analyzed failure loads, the applicability of the cavity management system developed by Seoul city was evaluated. As a result of the analysis, the effect of cavity height on road collapse was not significant while the other factors considerably influenced road collapse. Consequently, degree of road collapse susceptibility should be classified by failure load rather than by the condition of existing cavity.

A Fundermental Study on Stabilization in Municipal Waste Landfill Site (도시폐기물 매립지의 안정화에 관한 기초연구)

  • 김은호;김순호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • The investigation was carried out to analyze the generation and the composition of landfill gas generated from inserted pipe wells into the underground by boring operation and also study the undecomposed waste characteristics by open-cut test at S. waste landfill site in Pusan city. Pilot test was conducted for stabilization. The experimental results from this study were summerized as follows. ; Since COD matter was easuer decomposed than COD matter for continuously biological stabilization in underground, it seemed that BOD and CO $D_{Mn}$ were in the range of 854~4,813mg/$\ell$ and 1,156~6,977mg/$\ell$ and their ratio were generally as high as 0.55~0.74. As C $H_4$ compositions of generated gas were measured in the range of 37.36~60.1%, we could know that C $H_4$ gas was actively generated. Organic matters by open-cut test averaged 13.4~16.6% at each landfill layer, and considering rate of combustible compositions(36.2~66.5%) for landfilling wastes, they have been actively decomposed. The measured and theoretical values of generated gas in waste landfill site were almost similar to C $H_4$ 50.0% and 53.4%, $CO_2$ 39.63% and 45.24%, and after 0.5$^{\circ}C$ with heavy depth and long landfill period. From the results of pilot test for stabilization, after 180 days organic matters were actively decomposed beyond 2.2 times in facultative aerobic lystimeter(B) to exsiting anaerobic lysimeter(A). Therefore, it seemed that landfill site was of benefical to the conversion of facultative aerobic for stabilization.

  • PDF

Discrimination of Underground Explosions from Microearthquakes through the Pure-Continental Path (순수 대륙 경로에서 미소지진과 지하 인공폭발의 구별)

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.4 no.1
    • /
    • pp.29-42
    • /
    • 1994
  • Discrimination studies between microearthquakes and underground explosions are carried out in the pure-continental path of north-south within the Korean Peninsula. The characteristic waveforms for explosions and microearthquakes are investigated in the light of observation and synthetic seismograms. The characteristic waveform generation is minnly a function of source mechanism and ray-path and former influences more strongly than the latter.A double-couple source mechanism for microeatthquakes and a single-couple(force) mechanism for explosions are presented in this study. It is found for very shallow events to have outstanding of $L_g$ waves in the transverse components that pass through the upper crust with period of 1 - 6 seconds and fundamental modes of Rayleigh waves, $R_g$ in the vertical component with period 8-12 seconds. Furthermore it is pointed out that the first arrival amplitudes of SH waves for explosions are always srnall regardless of azimuth of stations since there is non-existence of nodal lines for the explosion mechanism. Theoretical seismograms for explosions show the first motions of compression with short wavelengths as well as mostly fundamental modes of Rayleight waves, $R_g$ waves and $L_g$ waves, whereas those of micro-earthquakes give either compression or dilatation according to the ack azimuth epicenter to stations and poor or non $R_g$ waves and complicated $L_g$ waves, depending on the focal depth.

  • PDF