• Title/Summary/Keyword: underground depth

Search Result 661, Processing Time 0.028 seconds

A Study on site selection criteria and discharge capability evaluation for the multi-purpose use of a double-deck tunnel in a great depth (대심도 복층터널의 다목적 활용을 위한 입지선정 및 통수성능 평가)

  • Moon, Hoon-Ki;Kil, Ki- Oh;Song, In-Cheol;Lee, Hye-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.283-290
    • /
    • 2016
  • Recent, the construction of the multi-purpose double-deck tunnel is required to solve the flood protection and congested area at urban city. The multi-purpose double-deck tunnel is desperately needed for the introduction of efficient utilization of underground space in addition to the main feature of road capabilities. A basic review was performed for site selection to consider the control capability and features of road tunnel at the same time, and the processable flow in accordance with tunnels cross section of double deck tunnel. Site Selection Criteria for multi-purpose use of the double-deck tunnel has been proposed through the site selection criteria by use of the tunnels review. Also the estimation processable flow was performed to review the versatility of double-deck tunnel due to design of tunnel cross-section. Site Selection of double-deck tunnel from this study can be seen the need for a complex consideration through a variety of analyzes.

Field monitoring of splitting failure for surrounding rock masses and applications of energy dissipation model

  • Wang, Zhi-shen;Li, Yong;Zhu, Wei-shen;Xue, Yi-guo;Jiang, Bei;Sun, Yan-bo
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.595-609
    • /
    • 2017
  • Due to high in-situ stress and brittleness of rock mass, the surrounding rock masses of underground caverns are prone to appear splitting failure. In this paper, a kind of loading-unloading variable elastic modulus model has been initially proposed and developed based on energy dissipation principle, and the stress state of elements has been determined by a splitting failure criterion. Then the underground caverns of Dagangshan hydropower station is analyzed using the above model. For comparing with the monitoring results, the entire process of rock splitting failure has been achieved through monitoring the splitting failure on side walls of large-scale caverns in Dagangshan via borehole TV, micro-meter and deformation resistivity instrument. It shows that the maximum depth of splitting area in the downstream sidewall of the main power house is approximately 14 m, which is close to the numerical results, about 12.5 m based on the energy dissipation model. As monitoring result, the calculation indicates that the key point displacement of caverns decreases firstly with the distance from main powerhouse downstream side wall rising, and then increases, because this area gets close to the side wall of main transformer house and another smaller splitting zone formed here. Therefore it is concluded that the energy dissipation model can preferably present deformation and fracture zones in engineering, and be very useful for similar projects.

Investigation for Fire Flow of the Deeply Underground Shin-Gum-Ho Subway Station (대심도 신금호역사의 화재 유동에 대한 고찰)

  • Jang, Yong-Jun;Park, Il-Soon;Kim, Jin-Ho;Jung, Woo-Sung;Kim, Hag-Beom;Lee, Chang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.110-115
    • /
    • 2010
  • Recently the deeply underground tunnels have been increased along the subway railroads of urban area compared to the past subway railroads. The Shin-Gum-Ho subway station (the Fifth lines, the depth : 46m) which is the third among the deep subway stations in the Korea was chosen as the model of deeply underground stations, and attempted to do simulation of fire. This station consists of three entrance, the basement first floor (B1), the basement second floor (B2), the basement eighth floor or platform (B8) and escalators and stairs from B2 to B8. The total number of grid was about 9,000,000 to make simulation of fire and smoke from the platform to entrance in this research, and the grid system was divided into 19 blocks to increase the efficiency of this simulation. The FDS (Fire Dynamics Simulation) was chosen to make the simulation of fire, and the model of turbulent flow was LES (Large Eddy Simulation). Each block is processed in a CPU using parallel processing of MPI (Message Passing Interface). The resource of CPU for this simulation is a ten of Intel 3.0 GHz Dual CPU (20 CPU).

  • PDF

LARGE EDDY SIMULATION OF ORDINARY & EMERGENCY VENTILATION FLOW IN UNDERGROUND SUBWAY STATION (지하역사 승강장 및 대합실 평상시 비상시 급·배기 환기 Large Eddy Simulation)

  • Jang, Yong-Jun;Ryu, Ji-Min;Park, Duck-Shin
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.72-78
    • /
    • 2013
  • The turbulent flow behavior of air supply and exhaustion in the Shin-gum-ho subway station is analyzed for ordinary and emergency state. The depth of Shin-gum-ho station is 43.6m which consists of the island-type platform(8th floor in underground) and a two-story lobby (first & second floor in underground). An emergency stairway connects between the platform and the lobby. Ventilation operation mode for ordinary state is set up as a combination of air supply and exhaustion in the lobby and platform, while for emergency state it is set up as a full air supply in the lobby and a full exhaustion in the platform. The entire station is covered for simulation. The ventilation diffusers are modeled as 95 square shapes of $0.6m{\times}0.6m$ in the lobby and as 222 square shapes of $0.6m{\times}0.6m$ and 4 rectangular shapes of $1.2m{\times}0.8m$ in the platform. The total of 7.5million grids are generated and whole domain is divided to 22 blocks for MPI efficiency of calculation. Large eddy simulation(LES) is applied to solve the momentum equation and Smagorinsky model($C_s$=0.2) is used as SGS(subgrid scale) model. The time-averaged velocity fields are compared to experimental data and show a good agreement with it.

Development of a Web-based Geospatial Information System for Analyzing and Assessing Geotechnical Information (지반정보 분석 및 평가를 위한 웹기반 지리공간정보 시스템 개발)

  • Lee, Sang-Hoon;Jang, Yong-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.142-152
    • /
    • 2007
  • Geotechnical information database, foundation of underground geographic information system in 2nd NGIS plan, had been developing by Ministry of Construction and Transportation since 2000. This database contains not only soil condition, such as depth, type and color of layer, and ground water level, but also engineering properties used for foundation design and construction, for instance, standard penetration test, compression test. But, it is difficult to apply this database for analyzing and designing geotechnical works, because report document is only offered. In this paper, we have developed web-based geospatial information system for the effective uses. First, underground cross-section model is generated by location, layer, and engineering properties of geotechnical information database at the realtime process. Second, earth volume, bearing capacity, and settlement is calculated and potentials of soft ground, liquefaction are evaluated through pre-defined empirical formula. This process is operated by web-based client. We wish to strengthen the application capacity through this system in construction planning and design works.

  • PDF

Significance of In-Situ Stresses in Stability Analysis of Underground Nuclear Waste Disposal Repository (방사성 폐기물 지하처분장의 안정성 분석에 있어서 암반내 초기응력의 역할과 의미)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.26-31
    • /
    • 2007
  • The 11 nuclear power plants have been taking charge of more than 40% of the total electrical power development in Korea. In addition to the existing nuclear power plants at Gori, Wolsung, Youngkwang, etc., the 12 nuclear power plants are expected to be newly established until 2006. So, the 23 nuclear power plants will produce the electric power as much as more than 50% of the national gross production. However the nuclear power plants are inevitably generating the detrimental atomic wastes. Therefore the disposal techniques for the nuclear wastes should be ensured considering a very high safety factor. According to the basic researches in KAERI, the underground disposal repositories are reported to be most favorable for Korea. The KBS-3 disposal system has been strongly suggested by KAERI and this system has a deep tunnel with several disposal boreholes in tunnel floor. The nuclear wastes, which are sealed tightly in a canister, will be disposed in these boreholes. Considering the disposal tunnel in a great depth, the in-situ stress regimes will affect severely the tunnel stability. Consequently the effect of the in-situ stresses on the disposal tunnel and the role of the in-situ stresses in tunnel stability analysis are examined by the numerical studies.

Development of an Earthquake-Resistant Model for a High-Level Waste Disposal Canister (고준위 폐기물 처분용기 내진 해석 모델 개발)

  • Choi, Young-Chul;Yoon, Chan-Hoon;Kim, Hyun-Ah;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.316-324
    • /
    • 2014
  • In the underground 500 m depth, the high level radioactive waste disposal system is made by boring the tunnel in the base rock and putting the high level waste disposal canister that is the surrounding form with the buffer material. According to the many statistics, it is the tendency that the earthquake increases in the Korean peninsula every year. In case that the earthquake is generated, the disposal canister in the rock mass can be broken due to the shearing force in the underground. Furthermore, a major environmental problems can be caused by the radioactive harmful substances. In this study, the earthquake-proof type buffer material was developed with the protection method safely on the earthquake. The main parameter having an effect on the earthquake-resistant performance was analyzed and the earthquake-proof type buffer material was designed. The shear analysis model was developed and the performance of the earthquake-proof type buffer material was evaluated by using ABAQUS.

The Study on Fire Phenomena in The Deeply Underground Subway Station (대심도 지하역사에서의 화재현상 연구)

  • Jang, Yong-Jun;Kim, Hag-Beom;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1773-1780
    • /
    • 2008
  • When the fire occur in the deeply underground subway station, the difficulties of passenger evacuation are expected because of many stairs to the exit. In this study, SOONGSIL-University station (7 line, 47m depth) is the one of the deepest subway stations of the each line in the Seoul metro. The numerical computational-simulation was performed for the fire driven flow in the subway station. Hot and smoke flow was analyzed from the simulation results. The proper plan of evacuation against fire was considered through the results. The fire driven flow was simulated using FDS code in which LES method was applied. The Heat Release Rate was 10MW and the ultrafast model was applied for the growing model of the fire source. The proper mesh size was determined from the characteristic length of fire size. The parallel computational method was employed to compute the flow and heat eqn's in the meshes, which are about 10,000,000, with 6cpu of the linux clustering machine.

  • PDF

Case Study on In-situ Stress Measurement by Over-coring and Its Application to Design of a Pumped Storage Power Plant (오버코어링법에 의한 초기지압측정 및 양수발전소 설계적용사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Lee, Young-Nam
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.90-101
    • /
    • 2007
  • With increasing development of underground space, underground pumped storage power plants, which generate power by felling water in upper reservoir to lower reservoir, have been continuously constructed. For efficient and safe design, construction and maintenance or such power plants, it is very important to understand in-situ stress and the mechanical properties of the surrounding rock mass at the design stage. The power plant presented in this paper is under construction at a depth of $320{\sim}375m$. For stability evaluation of the structure, in-situ stress was measured by over-coring method. Also pressurementer test and a series or laboratory tests were performed to obtain the mechanical properties. Numerical analyses were conducted to check the efficiency of designed support patterns. The results showed that unstable areas occurred partly in the numerical model, and therefore supports were additionally applied. Finally complete stability was obtained and the following excavation has been operated successfully until now.

Model test on slope deformation and failure caused by transition from open-pit to underground mining

  • Zhang, Bin;Wang, Hanxun;Huang, Jie;Xu, Nengxiong
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.167-178
    • /
    • 2019
  • Open-pit (OP) and underground (UG) mining are usually used to exploit shallow and deep ore deposits, respectively. When mine deposit starts from shallow subsurface and extends to a great depth, sequential use of OP and UG mining is an efficient and economical way to maintain mining productivity. However, a transition from OP to UG mining could induce significant rock movements that cause the slope instability of the open pit. Based on Yanqianshan Iron Mine, which was in the transition from OP to UG mining, a large-scale two-dimensional (2D) model test was built according to the similar theory. Thereafter, the UG mining was carried out to mimic the process of transition from OP to UG mining to disclose the triggered rock movement as well as to assess the associated slope instability. By jointly using three-dimensional (3D) laser scanning, distributed fiber optics, and digital photogrammetry measurement, the deformations, movements and strains of the rock slope during mining were monitored. The obtained data showed that the transition from OP to UG mining led to significant slope movements and deformations that can trigger catastrophic slope failure. The progressive movement of the slope could be divided into three stages: onset of micro-fracture, propagation of tensile cracks, and the overturning and/or sliding of slopes. The failure mode depended on the orientation of structural joints of the rock mass as well as the formation of tension cracks. This study also proved that these non-contact monitoring technologies were valid methods to acquire the interior strain and external deformation with high precision.