• Title/Summary/Keyword: underground coal mine

Search Result 66, Processing Time 0.019 seconds

A Study on the Correlation between Coal Mining Subsidence and Underground Goaf (페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Song, Kyo-Young;Jo, Min-Jeong
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.453-464
    • /
    • 2008
  • This study is to examine a relation between coal mining subsidence occurrence at abandoned underground coal mines and underground goaf with respect to surface geology, subsurface structure, depth and thickness of coal beds and the distribution of drifts. A study is carried out at the site where susceptibility of coal mining subsidence was proven high in a previous study. In that previous study, the susceptibility of coal mining subsidence was spatially analyzed by GIS using digitized geological maps, investigation reports, digitized mining tunnel maps without consideration of subsurface structure and the multi-level arrangement of drifts. Here we analyze geological characteristics around the goaf and the distribution of coal seam based upon digitized geological maps and investigation reports on the study area. And digitized mining tunnel maps are also used to analyze the depth and multi-level arrangement of drifts. The results show that weakened surface rock strength, relatively shallow depth and large thickness of coal seam below the surface are closely related to the coal mining subsidence occurrence. Complicatedly inter-connected drifts, shallow depth of drifts and surface rock fractures are revealed as additional control factors affecting coal mining subsidence. These factors examined in this study as well as original factors should be taken into account for the quantitative estimation of coal mining subsidence occurrence at abandoned underground coal mine.

Respirable Cool Dust Exposure Concentration at Work Sites of Underground Coal Mines in Taebaek Area (태백지역 석탄광산의 작업부서별 호흡성 분진 폭로농도)

  • Yoon, Young No;Chung, Ho Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.1
    • /
    • pp.47-55
    • /
    • 1991
  • Exposure level of respirable coal dust of underground coal mines in Taebaek area was evaluated. Personal air samplers with 10-mm nylone cyclones were attached to the coal workers including drillers, coal cutters, their assistants, haulers, and separators. Log-normality of respirable dust exposure concentration were tested by Kolmogorov-Smirnov one-sample test. Differences of means of respirable dust exposure concentration between work sites were tested by one-way ANOVA test and multiple comparison(Scheffe) test. And differences of respirable dust exposure concentration of principal and assistant workers in drilling sites and in coal faces were tested by paired t-test. Relation of respirable dust exposure concentration for the principal workers and their assistants in drilling sites and in coal faces were tested by regression analysis. The results were as follows : 1. All of the respirable dust concentration were log-normally distributed. 2. There were not only significantly different means of exposure concentration between drillers and coal cutters but between coal cutters and haulers. 3. Means of exposure concentration of drillers and drilling assistants were not significantly different. And means of exposure concentration of coal cutters and coal cutting assistants were not different.

  • PDF

Evaluation of the Stability for Underground Tourist Cavern in an Abandoned Coal Mine (폐탄광 갱도를 활용한 갱도전시장의 안정성 평가)

  • Han Kong-Chang;Jeon Yang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.425-431
    • /
    • 2005
  • A series of geotechnical surveys and in-situ tests were carried out to evaluate the stability of underground mine cave in an abandoned coal mine. After the closure of the mine, the underground mine drifts have been utilized for a tourist route since 1999. The dimension of the main cave is 5m width, 3m height and 230m length. The surrounding rock mass of the cave is consist of black shale, coal and limestone. Also, the main cave is intersected by two fault zone. Detailed field investigations including Rock Mass Rating(RMR), Geological Strength Index(GSI) and Q classification were performed to evaluate the stability of the main cave and to examine the necessity of reinforcement. Based on the results of rock mass classification and numerical analysis, suitable support design was recommended for the main cave. RMR and Q values of the rock masses were classified in the range of fair to good. According to the support categories proposed by Grimstad & Barton(1993), these classes fall in the reinforcement category of the Type 3 to Type 1. A Type 3 reinforcement category signifies systematic bolting and no support is necessary for the Type 1 case. From the result of numerical analysis, it was inferred that additional support on the several unstable blocks is required to ensure stability of the cave.

Size Distributions and Respirable Mass Fractions of Airborne Coal Dust in Underground Coal Mines (일부 석탄광산 기중 부유분진의 입경 분포와 호흡성 분진 비율)

  • Yoon, Young No;Kim, Young Sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.1
    • /
    • pp.62-67
    • /
    • 1991
  • Authors investigated size distributions of airborne mixed coal dust at drillings, coalfaces, and separating sites of underground coal mines in Taebaek, Hwasun, and Jeomchon area by ambient cascade impactors. And Respirable mass fractions were calculated from the size distributions by the ACGIH criteria.

  • PDF

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.

An Overview of Coal Mine Drainage Treatment (석탄광의 광산배수처리기술 현황 및 전망)

  • 정영욱
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • This study was undertaken to summarize of the efficiencies of the passive treatment system and suggest future studies for the solution of mine drainage problem. Flow rates of mine drainage from the abandoned coal mines are about 80,000 ton/day. Contaminated mine drainages over about 50 ton/day of flow rate were treated by passive treatment facilities such as Successive Alkalinity Producing Systems(SAPS), oxidation pond and oxic wetland. Chemical analysis for 13 passive coal mine treatment facilities showed that SAPS was the core of treatment facilities because the variation of Fe removal rates was relatively smaller than any other processes and re-leaching of Fe was not measured. The performance and life of SAPS depended on decrease in permeability and retention time due to accumulation of sludge. It is inferred that upgrade of design of the passive treatment system and in-situ treatment using underground void will be necessary for the amelioration of the mine drainage with high metal loading rates.

Characteristics of domestic coals and efficient control of coal dust (국내 석탄광 분진의 특성과 효율적 제어)

  • Kim, Soo Hong;Kwon, Jun Wook;Kim, Sun Myung;Kim, Yun kwang;Jang, Yun Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.589-609
    • /
    • 2017
  • This study carried out the density and energy dispersive X-ray spectroscopy and particle size analysis which are the physical characteristics of coal dust by collecting samples of coal dust in the five domestic mines to control the coal dust through ventilation in the workplace for coal mining in the country. This will contribute to a more comfortable working environment by understanding the physical characteristics of the coal dust which is derived from any hard coal produced domestically. In particular, the result of PSA analysis showed that the size of coal dust sample for this study ranged from $0.007{\sim}88.614{\mu}m$ were the particles less than $3.5{\mu}m$, the size range responsible for pneumoconiosis. To observe the flow of coal dust collected on the wind speed, the fallout of coal dust produced by the wind tunnel for the wind was measured and the particle size analysis of coal dust fallout was carried out. In addition, airborne dust is measured according to the mine velocity by using a multi-stage Anderson sampler in the mine where fine dust is generated in a large amount and the wind speed is found out to control the coal dust below $3.5{\mu}m$. In addition, natural ventilation pressure of A mine was calculated to prevent over design of the main fan.

A Study on the Influence of Underground In-flow Water to Coal Production in Changsung Coal Mine (장성탄광(長省炭鑛)의 갱내출수(坑內出水)가 생산량(生産量)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Doo Young;Kim, Young Dal
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.229-239
    • /
    • 1980
  • A various kinds of harmful gases in the gallery and the increasing quantity of in-flow water are the important factors causing mainly the decline in production. In this thesis, the increase and decrease of in-flow water which effects the out put have been investigated and analysed in the statistical method. Through the results obtained together with the stastistical data some typical interreation formula between the quantity of in-flow water and production have been induced and the productive percentage in season was examined with special reference to Changsung Coal Mine. The formulas are as fallows: (1) Underground in-flow water to production; $Y=-5.74x^2+108.9x+6,346.6$ where, Y: production(tons/day): x:in-flow water($m^3/min$), (2) Rain and Snow fall to production; P=6.555-1.591 R+1.282S where, P;production(tons/day); R:rain fall(mm); S : snowfall(cm), (3) Productivity ratio in season compared with the average annual production; 1st quarter of year:100.1%, 2nd quarter of year: 100.3%, 3rd quarter of year: 97.2%, 4th quarter of year: 102.4%.

  • PDF

Recycling of Coal Ash and Related Environmental Issues in Australia (호주의 석탄재 재활용 사례와 석탄재 재활용과 관련된 환경 문제)

  • Park, Jin Hee;Ji, Sang-Woo;Shin, Hee-Young;Jo, Hwanju;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Coal combustion products are generated during coal combustion and can be grouped into fly ash and bottom ash depending on collection methods. Fly ash and bottom ash can be recycled for various purposes based on their characteristics. Australia is the fourth largest coal production country in the world and reuses coal ash as cement, concrete, mine filler, and agricultural soil amendment. When fly ash is used as a supplement for cement and concrete, strength of the cement and the durability of the concrete can be improved. Use of coal combustion product for mine backfill stabilizes underground mine voids and stores a large amount of coal ash in the voids. Because of alkalinity of coal combustion products, it can neutralize acid mine drainage when used for mine backfill. In addition, it can be used as an agricultural soil amendment to improve acidity and physical properties of the soil and to supply plant nutrients. Recycling of fly ash in Australia will be further expanded because of its low trace element contents that can be toxic to plants and low radioactive element contents existing within soil background concentrations. The characteristics of coal combustion products are related to the characteristics of the coal used for combustion, and since Korea imports coal from Australia, Korean coal combustion products also can be recycled for various purposes.

Defect Detection of Steel Wire Rope in Coal Mine Based on Improved YOLOv5 Deep Learning

  • Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.745-755
    • /
    • 2023
  • The wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions exerts an exceedingly crucial role in safe production. The existing defect detection solutions exhibit some deficiencies pertaining to the flexibility, accuracy and real-time performance of wire rope defect detection. To solve the aforementioned problems, this study utilizes the camera to sample the wire rope before the well entry, and proposes an object based on YOLOv5. The surface small-defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to enhance the model accuracy of small sample training. Herein, the enhanced YOLOv5 algorithm effectively enhances the accuracy of target detection and solves the defect detection problem of wire rope utilized in mine, and somewhat avoids accidents occasioned by wire rope damage. After a large number of experiments, it is revealed that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly enhanced with those before the modification, and that the detection speed can be maintained at a real-time level.