• 제목/요약/키워드: underground cavern

Search Result 173, Processing Time 0.027 seconds

A Case Study on the Occurrence and Solution of Stability problems around Large Underground Storage Cavern in Highly Stressed Rock Mass (과지압 암반내 대규모 지하공동 안정성 문제 및 대책)

  • Lee, Dae-Hyuck;Lee, Hee-Suk;Park, Yeon-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.622-640
    • /
    • 2009
  • 원유 비축기지 저장공동과 같이 상하로 긴 형상의 대규모 공동에서 횡방향의 지압이 과도하게 작용하면 천정부의 응력집중과 측벽의 암반 변위가 과도하게 발생하여 저장공동의 불안정 요인이 된다. 특히 지압의 절대 크기가 암반 강도의 일정 비율 이상이 되면 응력 집중에 의한 암반의 취성 파괴를 유발하고, 이러한 현상은 터널 굴착 시 발생하는 파괴음(popping)과, 굴착면에 평행한 형태로 암편이 탈락하는 취성파괴(spalling) 현상을 동반한다. 이 글에서는 대규모 지하저장공동 굴착시 실제 발생한 과지압으로 인한 문제 사례에 대해 소개한다. 저장공동 굴착시 관찰된 암편 및 숏크리트 탈락과 균열 발생 현상을 관찰하고 암반 계측결과 분석을 통해 과지압의 현상을 진단하였다. 과지압 구간의 현재 상태 및 원안 설계안에 대해 연속체 및 불연속체 안정성 해석을 실시하여 문제의 심각성을 평가하였다. 이를 통해 굴착 형상 변경 및 특수 보강 방안을 제안하였으며 제안된 안의 보강효과에 대한 수치해석 평가 결과를 재검토 하였다. 이들 결과를 종합하여 과지압구간 보강안을 도출하였으며 상시 안정성 감시 대책으로 현장 암반의 미소파괴음 계측 방안을 제시하였다.

  • PDF

Status of Underground Thermal Energy Storage as Shallow Geothermal Energy (천부 지열에너지로서의 지하 열에너지 저장 기술 동향)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.197-205
    • /
    • 2010
  • Recently abrupt climate changes have been occurred in global and regional scales and $CO_2$ reduction technologies became an important solution for global warming. As a method of the solution shallow underground thermal energy storage (UTES) has been applied as a reliable technology in most countries developing renewable energy. The geothermal energy system using thermal source of soil, rock, and ground water in aquifer or cavern located in shallow ground is designed based on the concept of thermal energy recovery and storage. UTES technology of Korea is in early stage and consistent researches are demanded to develop environmental friendly, economical and efficient UTES systems. Aquifers in Korea are suitable for various type of ground water source heat pump system. However due to poor understanding and regulations on various UTES high efficient geothermal systems have not been developed. Therefore simple closed U-tube type geothermal heat pump systems account for more than 90% of the total geothermal system installation in Korea. To prevent becoming wide-spread of inefficient systems, UTES systems considering to the hydrogeothemal properties of the ground should be developed and installed. Also international collaboration is necessary, and continuous UTES researches can improve the efficiency of shallow geothermal systems.

Automatic Parameter Estimation of Hydrogeologic Field Test around Underground Storage Caverns by using Nonlinear Regression Model (비선형 회귀모형을 이용한 지하저장공동 주변 현장수리지질시험 매개변수의 자동 추정)

  • Chung, Il-Moon;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.359-369
    • /
    • 2008
  • For the design and effective management of underground storage caverns, preliminary investigation on the hydrogeologic parameters around caverns and analysis on the groundwater flow must be carried out. The data collection is very imporatnat task for the hydrogeologic design so various hydraulic tests have been performed. When analyzing the injection/fall off test data, existing graphical method to estimate the parameters in Theis' equation is widely used. However this method has some sources of error when estimating parameters by means of human faults. Therefore the method of estimating parameters by means of statistical methods such as regression type is evaluated as a useful tool. In this study, nonlinear regression analysis for the Theis' equation is suggested and applied to the estimation of parameters for the real field interference data around underground storage caverns. Damping parameter which reduce the iteration numbers and inhance the convergence is also introduced.

Relationship between Hydrochemical Variation of Groundwater and Gas Tigtness in the Underground Oil Storage Caverns (지하원유비축기지 공동주변 지하수의 수질화학적 변화와 기밀성과의 관계)

  • Jeong Chan Ho
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.259-272
    • /
    • 2004
  • The purpose of this study is to investigate the effect of hydrochemical variation of groundwater on the gas tigtness in an unlined oil storage cavern. The groundwater chemistry is greatly influenced by the seawater mixing, the water curtain and the dissolution of grounting cements. The chemical composition of groundwater greatly varies ac-cording to both the location of monitoring wells and the sampling period. Most of groundwater shows alkaline pH and high electrical conductivity. The chemical types of groundwater show the dominant order as follows : Na-Cl type > Ca-Cl type > $Ca-HCO_3(CO_3)$ type. Thermodynamic equilibrium state between chemical composition of groundwater and major minerals indicates that carbonate minerals except clay minerals can be precipitated as a secondary mineral. It means that the secondary precipitates can not greatly exerts the clogging effect into fracture aperture in rock mass around oil storage cavern. The content of total organic carbon (TOC) shows a slightly increasing trend from initial stage to late stage. The $EpCO_2$ was computed so as to assess the gas contribution on the $CO_2$ in groundwater. The $EpCO_2$ of 0$\~$41.3 indicates that the contribution of oil gas on $CO_2$ pressure in groundwater system can be neglected.

Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis (확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석)

  • Park, Dohyun;Kim, Hyunwoo;Park, Jung-Wook;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • Multiple thermal energy storage (TES) caverns can be used for storing thermal energy on a large scale and for a high-aspect-ratio heat storage design to provide good thermal performance. It may also be necessary to consider the use of multiple caverns with a reduced length when a single, long tunnel-shaped cavern is not suitable for connection to aboveground heat production and injection equipments. When using multiple TES caverns, the separation distance between the caverns is one of the significant factors that should be considered in the design of storage space, and the optimal separation distance should be determined based on a quantitative stability criterion. In this paper, we described a numerical approach for determining the optimal separation distance between multiple caverns for large-scale TES utilization. For reliable stability evaluation of multiple caverns, we employed a probabilistic method which can quantitatively take into account the uncertainty of input parameters by probability distributions, unlike conventional deterministic approaches. The present approach was applied to the design of a conceptual TES model to store hot water for district heating. The probabilistic stability results of this application demonstrated that the approach in our work can be effectively used as a decision-making tool to determine the optimal separation distance between multiple caverns. In addition, the probabilistic results were compared to those obtained through a deterministic analysis, and the comparison results suggested that care should taken in selecting the acceptable level of stability when using deterministic approaches.

Analysis of Fire Scenarios and Evaluation of Risks that might Occur in Operation Stage of CAES Storage Cavern (CAES 저장 공동 운영단계에서 발생 가능한 리스크 평가 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye;Seo, Saem-Mul;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2015
  • This study focuses on assessing risks which might occur in operation stage of CAES storage cavern and analyzing fire scenarios for the risk that have been assessed with highest risk level. Risks in operation stage were categorized into upper risk group and lower risk group. Components of upper risk group are technical risk, facility risk and natural disaster risk. Lower risk group is composed of 11 sub-risks. 20 experts were chosen to survey questionnaires. ANP model was applied to analyze the relative importance of 11 sub-risks. Results of risk analysis were compared with risk criterion to set risk priorities, and the highest risk was determined to be 'occurrence of the fire within the management opening'. Three fire scenarios were developed for the highest risk level and FDS (Fire dynamics Simulator) was used to analyze these scenarios. No. 3 scenario which air blows from tunnel into outside atmosphere represented that a rate of smoke spread was the fastest among three fire scenarios and a smoke descended most quickly below the limit line of breathing. Thus, No. 3 scenario turned out to be the most unfavorable condition when operating staffs were evacuated from access tunnel.

Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test (압열인장시험을 이용한 화강암의 지연파괴특성 및 장기안정성 평가)

  • Jung, Yong-Bok;Cheon, Dae-Sung;Park, Eui-Seob;Park, Chan;Lee, Yun-Su;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2014
  • Long-term stability and delayed failure of granite were evaluated through the laboratory test based on Wilkins method and Brazilian disc test (BDT) which yields tensile strength, mode I fracture toughness and subcritical crack growth parameters. Then, the long-term strength of granite was estimated by using analytical models and long-term stability of compressed air-energy storage (CAES) pilot cavern pressurized up to 5 ~ 6 MPa was evaluated using numerical code, FRACOD with the determined subcritical crack growth parameters. The results of test and analyses showed that the subcritical crack growth index, n was determined as 29.39 and the inner pressure of 5 ~ 6 MPa had an insignificant effect on the long-term stability of pilot cavern. It was also found that the measurement and analysis of acoustic emission events can describe the accumulation of damage due to subcritical crack growth quantitatively. That is, AE monitoring can provide the current status of rock under loading if we make an identical installation condition in the field with that of the laboratory test.

Corrosion of Calcareous Rocks and Ground Subsidence in the Muan Area, Jeonnam, Korea (전남 무안지역에 분포하는 석회질암의 용식작용과 지반침하)

  • Ahn, Kun-Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.47-58
    • /
    • 2007
  • This study examines the distribution of basement rocks in Gyochon-ri, Muan-eup, Muan-gun, Jeonnam where ground subsidence occurred in June 2005, and traces corrosion of limestone. Mica schist and rhyolite are distributed in the surface of the study area, but thick limestone layer with large and small caverns are distributed underground. A horizon of limestone with maximum width of 300 m and 4 km of length was found along the detour which is in the north of pound subsidence. Such identification of limestone presence would be very useful to predict potential ground subsidence. Limestone in this area was disturbed by fold and fault due to severe shearing deformation. Small caverns were frequently found in anticline part of folds formed in limestone layer. Schists with different thicknesses were intercalated in the limestone with shearing deformation and consist of sheet silicate minerals (chlorite and mica) and quartz. In sections of weathered specimen, it is shown that biotite of schist part was altered into chlorite and corrosion of calcite around the schist followed. This suggest that ground water permeated between intercalated sheet silicate minerals and corrosion of limestone began. And small caverns were generated where active corrosion occurred. This study suggests that because of many reasons (for instance, reclamation of the Bulmu reservior and excess pumping), cavern water level was lowered and cave sediments were removed, and it caused ground subsidence to occur.

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.

Numerical Study on the Optimal Shape of Concrete Plug for Compressed Air Energy Storage Caverns (압축공기에너지 저장 공동의 콘크리트 플러그 최적 형상에 대한 수치해석적 연구)

  • Park, Doh-Hun;Kim, Hyung-Mok;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.164-173
    • /
    • 2011
  • In the present study, the stability of a compressed air energy storage cavern was numerically assessed by concrete plug shapes in order to investigate the optimal shape of concrete plug. The concrete plugs were cylindrical, embedded cylindrical, tapered, and wedged in shape. The stability assessment was carried out based on factor of safety through a strength reduction method and a volume ratio which refers to the ratio of the volume of yield regions in concrete induced by internal pressure to all concrete volume. The results from the present study indicated that the embedded cylindrical and taper shaped plugs were mechanically more stable than the cylindrical and wedge shaped plugs. However, from a comparison of stress distributions in rock mass between the embedded cylindrical and taper shaped plugs, the taper shaped plug was found to be more optimal than the embedded cylindrical plug, since the embedded cylindrical plug caused more stress concentration in the interface between the plug and rock mass than the taper shaped plug.