• Title/Summary/Keyword: underground LPG

Search Result 52, Processing Time 0.018 seconds

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF

Analysis of A Gas Explosion-Related State Compensation Case (가스폭발 사고와 관련된 국가배상 사례의 분석)

  • Lee, Euipyeong
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.44-59
    • /
    • 2020
  • This study analyzed a gas explosion accident. A gas smell from a underground coffee shop in the two-story building was reported to 119. A fire brigade was turned out, turned off the main valve of LPG gas cylinder on the roof, and checked the turning off of middle valve in the coffee shop. The fire brigade required a gas supplier and gas installer who arrived at the spot to take safety actions. Gas explosion occurred seven minutes after the fire brigade was withdrawn and two people died and 21 people were injured. A court decided that because the causes for gas explosion were not found, compensation responsibility could not be charged with the gas supplier, the gas installer, or Korea Gas Safety Corporation. In this reason, the court judged that only the fire brigade who was withdrawn without taking safety actions shall compensate victims or bereaved families. Therefore, fire brigades who turn out after a 119 report of a gas leak should take safety actions such as escaping people or preventing people's access and ventilating and be withdrawn when there is no possibility of fire or explosion.

Evaluation of Rock Damage Zone Using Seismic Logging Method (탄성파 점층법을 이용한 암반손상대 평가)

  • Kang Seong-Seung;Hirata Atsuo;Obara Yuzo;Haraguchi Naoyuki
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.50-57
    • /
    • 2006
  • Development of structures such as slope and tunnel, waste disposal, oil and LPG storages, and underground power house and so on, is increasing with the year. The method for appropriate estimation of rock state such as fresh or damaged rocks is also requested with increasing structural development. On these purposes, seismic logging system, which is a simple and easy way for handling as well as small and light, has been developed. Seismic logging method is one of logging tests, which is able to evaluate the state of rock mass with various shapes and is possible to obtain the relatively accuracy data at situ state. In addition, seismic logging method is at to apply to estimate structural behavior, before and after support installed. According to the results obtained from this study, firstly, it is clear that the extent of damage in rock slope due to blasting is able to be evaluated with quantity using seismic logging method, moreover to decide the damage zone in rock slope reasonably. Secondly, it is expected that installing depth of support is able to be decided more effectively and economically, using the results of seismic logging data. Finally, seismic logging method is also able to be applied safety supervision of structures, before and after support installed.

Development and Its Application of a Discrete Fracture Flow Model for the Analysis of Gas-Water Transient Flow in Fractured Rock Masses Around Storage Cavern (지하저장공동 주변 불연속 암반에서의 가스-물 천이유동해석을 위한 개별균열 유동모델의 개발 및 응용)

  • 나승훈;성원모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.705-712
    • /
    • 2000
  • The fluid generally flows through fractures in crystalline rocks where most of underground storage facilities are constructed because of their low hydraulic conductivities. The fractured rock is better to be conceptualized with a discrete fracture concept, rather continuum approach. In the aspect of fluid flow in underground, the simultaneous flow of groundwater and gas should be considered in the cases of generation and leakage of gas in nuclear waste disposal facilities, air sparging process and soil vapor extraction for eliminating contaminants in soil or rock pore, and pneumatic fracturing for the improvement of permeability of rock mass. For the purpose of appropriate analysis of groundwater-gas flow, this study presents an unsteady-state multi-phase FEM fracture network simulator. Numerical simulation has been also conducted to investigate the hydraulic head distribution and air tightness around Ulsan LPG storage cavern. The recorded hydraulic head at the observation well Y was -5 to -10 m. From the results obtained by the developed model, it shows that the discrete fracture model yielded hydraulic head of -10 m, whereas great discrepancy with the field data was observed in the case of equivalent continuum modeling. The air tightness of individual fractures around cavern was examined according to two different operating pressures and as a result, only several numbers of fractures neighboring the cavern did not satisfy the criteria of air tightness at 882 kPa of cavern pressure. In the meantime, when operating pressure is 710.5 kPa, the most areas did not satisfy air tightness criteria. Finally, in the case of gas leaking from cavern to the surrounding rocks, the resulted hydraulic head and flowing pattern was changed and, therefore, gas was leaked out from the cavern ceiling and groundwater was flowed into the cavern through the walls.

  • PDF

A Study on Mechanical Behaviors of Granite and Sandstone at Low Temperature (저온하에서의 화강암, 사암의 역학적 거동에 관한 연구)

  • 안경문;박연준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • To stabilize the energy price, the more storage facilities of energy are required and among the storage methods of LPG and LNG, the method of storage at low temperature under normal confining pressure is considered. It is needed to understand the mechanical and thermal characteristics of rock under temperature variation so that the behaviors of rock can be predicted. In this paper, the variation of the rock charateristics of the Hwangdeung granite and the Boryung sandstone is studied at low temperature. The mechanical characteristics of rock under low temperatures are that as temperature decreased, unaxial compression strength and Young's modulus increased for Hwangdeung granite; strength and Young's modulus in wet condition were greater than those in dry condition. In the case of Boryung sandstone, as temperature decreases unaxial compression strength and Young's modulus increase but decrease below -10$0^{\circ}C$ in dry condition and below -16$0^{\circ}C$ in wet condtion. The mechanical characteristics of rock after cooling to previous temperature and thawing are that uniaxial compression strength and Young's modulus decrease as temperature decreases. Uniaxial compression strength and Young's modulus in wet conditon decrease more than those in dry condition. Brazilian tension strength decreases as temperature decreases.

  • PDF

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

A Quantitative Analysis of Groundwater Flow into Underground Storage Caverns (지하저장공동의 지하수 유입량에 관한 정량적 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Cho, Woncheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1062-1066
    • /
    • 2004
  • 암반 내에 공동을 굴착하여 LPG 혹은 원유를 저장하는 경우 공동에서의 지하수 유입량은 공동상부의 수압과 공동내의 가스압과의 관계를 파악할 수 있는 정량적인 지표가 된다. 공동내의 유입량은 되도록 일정하게 유지되는 것이 굴착등의 시공단계와 공동 운영 및 유지관리면에서 유리하며, 유입량의 급증 혹은 급감이 일어나는 경우는 그 원인을 조기에 규명하여야 한다. 이를 위해서는 지하수위, 가스저장압, 수막공 주입압 등에 따른 공동주변의 유동장 해석, 공동내로의 지하수 유입량 해석을 실시해야 한다. 지하저장공동의 유입량 해석에 있어서는 공동의 정확한 형상을 반영하기 위해서 유한요소법이 보편적으로 사유되어 왔으나 한번 설정한 유한요소망으로부터 공동의 설계요소를 변경하는 작업은 수원하지 않아 설계전단계에서 공동 및 수막 시설의 다양한 배치에 따른 모의를 수행하는데는 다소 무리가 있다. 이러한 불편함은 경계부의 형상과 조건만으로 내부점에서의 미지변수 계산을 효과적으로 수행할 수 있는 경계요소법을 도입함으로써 극복할 수 있다. 따라서 본 연구에서는 지하공동으로 배수되는 유입량 산정을 위해 경계요소법을 근간으로 한 2차원 지하수 흐름모형을 구성하였고, 이를 지하저장공동이 위치한 A기지에 적용하여 상부경계조건인 지하수위의 변화, 수막공 주입압 등에 따른 공동내의 유입량과 공동저장압과의 관계를 정량적으로 분석하였다. 분석 결과를 지하저장공동의 운영 및 유지관리에 활용될 수 있도록 수식화하여 제시하였다.

  • PDF

Case study on the lake-land combined seismic survey for underground LPG storage construction (LPG 지하저장기지 건설을 위한 수륙혼합 탄성파탐사 사례)

  • Cha Seong-Soo;Park Keun-Pil;Lee Ho-Young;Lee Hee-Il;Kim Ho-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.101-125
    • /
    • 2002
  • A lake seismic survey was carried out to investigate possible geohazards for construction of the underground LPG storage at Namyang Lake. The proposed survey site has a land-lake combined geography and furthermore water depth of the lake is shallow. Therefore, various seismic methods such as marine single channel high resolution seismic reflection survey, sonobuoy refraction survey, land refraction survey and land-lake combined refraction survey were applied. Total survey amounts are 34 line-km of high resolution lake seismic survey, 14 lines of sonobuoy refraction survey, 890 m of land refraction survey and 8 lines of land-lake combined refraction survey. During the reflection survey, there were severe water reverberations from the lake bottom obscured subsurface profiling. These strong multiple events appeared in most of the survey area except the northern and southern area near the embankment where seems to be accumulated mainly mud dominated depositions. The sonobuoy refraction profiles also showed the same Phenomena as those of reflection survey. Meanwhile the results of the land-lake combined refraction survey showed relatively better qualities. However, the land refraction survey did not so due to low velocity soil layer and electrical noise. Summarized results from the lake seismic survey are that acoustic basement with relatively flat pattern appeared 30m below water level and showed three types of bedrock such as fresh, moderately weathered and weathered type. According to the results of the combined refraction survey, a velocity distribution pattern of the lake bottom shows three types of seismic velocity zone such as >4.5 km/s, 4.5-4.0km/s and <4.0km/s. The major fault lineament in the area showed NW-SE trend which was different from the Landsat image interpretation. A drilling was confirmed estimated faults by seismic survey.

  • PDF

Analysis of Groundwater Flow into Underground Storage Caverns by Using a Boundary Element Model (경계요소모형을 이용한 지하 저장공동의 지하수 유입량 분석)

  • Chung, Il-Moon;Lee, Jeong-Woo;Cho, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.537-544
    • /
    • 2005
  • For the proper management of high pressurized gas storage caverns, analysis of groundwater flow field and inflow quantity according to the groundwater head, gas storage pressure and water curtain head should be performed. The finite element method has been widely used for the groundwater flow analysis surrounding underground storage cavern because it can reflect the exact shape of cavern. But the various simulations according to the change of design factors such as the width of water curtain, shape of cavern etc. are not easy when elements were set up. To overcome these limitations, two dimensional groundwater flow model is established based on the boundary element method which compute the unknown variable by using only the boundary shape and condition. For the exact computation of drainage rate into cavern, the model test is performed by using the exact solution and pre-developed finite element model. The test result shows that the model could be used as an alternative to finite element model when various flow simulations are needed to determine the optimizing cavern shape and arrangement of water curtain holes and so forth.

Hazard Evaluation of Gas Processes Using a Multi-distinction Equipment Screening Algorithm (다중판별 장치 스크리닝 기법을 이용한 가스공정의 위험성 평가)

  • Yoon En Sup;Park Jeong Su;Ahn Sung Joon;Han Kyounghoon;Yoon Jong Phil;Kim Ku Hwoi;Shin Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.1-9
    • /
    • 2003
  • A Multi-distinction Equipment Screening Algorithm (MESA) is proposed. It selectively integrates Dow's F&EI as its process hazard index technique and ESA (Equipment Screening Algorithm) as qualitative hazard classification technique, and retrieves a detailed list of hazardous equipments with the total hazard indices of those equipments. The inherent expert system, which includes the accident scenarios of the equipments and processes and experts' views of them, narrows further down the list of hazardous equipments and recommends only the most notable candidates. Through the case study of distinguishing the hazardous ranking of the equipments of the LPG underground storage process, using the expert system or not, the applicability of MESA has been validated. Taking the characteristics of the process equipments with hazardous ranking in the point of process intrinsic safety, this proposed algorithm would contribute to providing engineers or managers with information on constructing safely devices and mitigation devices and on scheduling emergency response planning.

  • PDF