• Title/Summary/Keyword: undercooling

Search Result 34, Processing Time 0.028 seconds

The Study on the Spherulitic Rhyolites in the northern part of Juwang Mt., Cheongsong (청송 주왕산 북부 일대의 구과상 유문암에 대한 연구)

  • 오창환;김성원;황상구;손창환;김창숙;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.103-118
    • /
    • 2004
  • In Cheongsong area, very rare spherulitic rhyolites both in Korea and foreign countries occur as dykes showing various types. The spherulites in them represent an undercooling caused by very fast cooling of the dykes in a shallow depth near to the surface and the variety of types were resulted from the difference of relative cooling rate. Cheongsong spherulitic rhyolites can be classified into five types; radiated simple spherulite, layered simple spherulite, layered multiple spherulite, radiated-layered multiple spherulite, radiating layered multiple spherulite. Radiated simple and radiating layered multiple spherulites formed by diffusion current caused by undercooling related to very fast cooling. On the other hand, layered multiple spherulites formed by relatively slow diffusion as a Liesegang ring during relatively slow cooling. If the cooling rate is between the two cases, layered simple spherulites formed. This interpretation indicates that Chrysanthemum, Dandelion, Dahlia and Sunflower types which are included in radiated simple or radiating layered multiple spherulites formed in the dykes with the fastest cooling rate in Cheongsong area while Peony, Rose and Innominate types classified as layered multiple spherulite formed in the dykes with the relatively slowest cooling rate. At the cooling rate between them, Apricot type spherulite formed. The K-Ar age-dating for Cheongsong spherulitic rhyolites indicate them to be formed between 48 and 50 Ma. The Cheongsong rhyolites are very valuable for research and preservation because of their rarity, beauty and diversity.

DHC Characteristics of M11 Pressure Tube in Wolsong Unit 1

  • Kim, Sung-Soo;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Delayed hydride cracking (DHC) velocity and threshold stress intensity factor for DHC ($K_{IH}$) tests in the radial direction on M11 pressure tube material in Wolsong unit 1 were carried out following the Atomic Energy Canada Limited (AECL) standard test procedure in order to identify the effect of undercooling on DHCV and to acquire the $K_{IH}$ data. The results showed that $K_{IH}$ 's were 8.8$\pm$0.8 MPa√m in the back offcut and 11.4$\pm$0.7 MPa√m in the front offcut. The fact that $K_{IH}$ in the front offcut is about 20% higher than that in the back offcut is attributed to the microstructural difference between the materials of the front and back ends. $K_{IH}$ 's in M11 pressure tube appeared to be higher than the values from the tubes made of double melted ingot reported earlier. This can be interpreted by the fact that very small amounts of Chlorine (Cl) and Phosphorus (P) are contained in the ingot and that the content of the harmful elements in the M11 pressure tube is equivalent to that made of a quadruple melting process. DHC velocities at 25$0^{\circ}C$ in the front offcut in the radial direction are measured to be 5~8$\times$10$^{-8}$ m/s. The results show that the prior thermal history change the DHC velocity significantly. This effect was confirmed by the experiment of undercooling prior to the DHC tests.DHC tests.

  • PDF

Effects of Initial Nucleation Condition at the Start Block on the Grain Size and Growth Direction in Directionally Solidified CM247LC Superalloy (CM247LC 초내열합금에서 일방향응고 스타트 블록의 초기 핵생성 조건에 따른 결정립 성장)

  • Yoon, Hye-Young;Lee, Je-Hyun;Jung, Hyeong-Min;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • The grain size and growth direction of a directionally solidified turbine blade were evaluated by the initial nucleation condition at the start block of directional solidification. The initial nucleation condition was controlled by inserting a Ni foil on the directional solidification plate of the directional solidification furnace. Fine grains with good orientation were obtained in the faster cooling condition at the start block. The nucleus number was compared with the cooling rate of the start block by electron back scattered diffraction (EBSD). DSC (differential scanning calorimeter) analysis was performed to compare the melting point and undercooling for nucleation of the coarse nuclei and fine nuclei of the start block. The faster cooling condition at the start block showed more undercooling for nucleation and smaller size of nuclei which resulted in a fine grain with good orientation in the directional turbine blade.

Solidification Behaviors of the Rapidly Solidified Metallic Powders and Development of the Powder Making Process.;Part I : Development of the Powder Making Process (급속응고된 금속분말의 응고거동 및 제조법에 관한 연구;Part I : 급속응고 제조법)

  • Kim, Jong-Yoon;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.164-174
    • /
    • 1995
  • New metallic powder making processes, named "Centrifugal Emulsification Process(CEP)" and "Mixer and Settler(MS)" have been developed to synthesize rapid solidified metallic powders. Through CEP and MS processings, the high temperature metals as well as the low temperature alloys are manufactured. Also, the effects of rapid solidification on the undercooling, solidification rate and crystallization behaviors can be evaluated effectively through the processes. The standard deviations of the synthesized typical Pb-Sn eutectic powders are 1.63 and 1.51 for CEP and MS respectively, and the average size of the MS powders was $18{\mu}m$. The possibility of the customized not only size and shape control but microstructure control was also shown. Both of the new methods can be applied to continuous powder making processes.

  • PDF

Nano-Composite Solder Technology for the Improvement of Solder Joint Properties (무연솔더 접합부 특성향상을 위한 나노복합솔더 기술)

  • Ki, Won-Myoung;Lee, Young-Kyu;Lee, Chang-Woo;Yoo, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.9-17
    • /
    • 2011
  • Nano-composite solders have been studied to improve the properties of Pb-free solder joints. The nanoparticles in the composite solders were carbon nanotubes(CNTs), metals (Ag, Ni, Cr, etc.), ceramics (SiC, $ZrO_2$, $TiB_2$, etc.). To fabricate the nano-composite solders, mechanical mixing methods and in-situ fabrication method has been used for well-dispersed nano phase. The characteristic properties of the nano-composite solders were high creep resistance, low undercooling, low IMC growth rate and fine microstructures. More researches on the nano-composite solders are required to improve the processibility and the reliability of the nano-composite solder joints.

Crystallization of $K_2O-SiO_2-TiO_2$ Glasses ($K_2O-SiO_2-TiO_2$ 계 유리의 결정화)

  • 김성식;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.2
    • /
    • pp.44-50
    • /
    • 1985
  • The crystallization behavior of $K_2O-SiO_2$ glasses with added $TiO_2$ and the effect of $TiO_2$ on internal nuleation at temperature in the range of 875 to 121$0^{\circ}C$ have been investigated by means of X-ray diffractometry optical microscopy and scanning electron microscopy. The crystalline phase of these glasses identified by X-ray diffractometry is cristbalite. The scanning electron microspcopy reveals a two-phase layer of dendritic crystals and intersitial melt which grow from the surface at a constant rate, The observed crystallization rates are consistent with a diffusion-controlled mechanism. An equation relating viscosity and undercooling to growth rate is presented.

  • PDF

Study on Hydrate Formation and Dissociation Characteristics Observation by Change of HFCs & $N_2$ Mixture (HFCs & $N_2$ 혼합가스의 조성변화에 따른 Hydrate 형성/해리 특성 관찰에 관한 연구)

  • Shin, Hyung-Joon;Moon, Dong-Hyun;Kim, Young-Seok;Seo, Yong-Won;Lee, Gang-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.716-719
    • /
    • 2009
  • HFC-134a 의 농도별(99.9%, 80%, 50%, $N_2$ balance)로 하이드레이트의 결정생성/해리 특성을 연구하였다. HFC-134a 하이드레이트는 기/액 경계면에서만 수지상 형태의 하이드레이트 결정이 생성되었으며 수용액 내의 하이드레이트 결정관찰을 위해 물리적인 방법을 이용하였다. HFC-134a 농도가 낮을수록 하이드레이트 결정생성 속도가 둔화되었으며 특히 $N_2$의 함량이 50% 이상일 경우 $N_2$가 확연히 inhibitor 역할을 하였다. 하이드레이트 해리 시에는 기/액 경계면과 수용액 내부에서 매우 다른 양상이 관찰되었으며 하이드레이트 결정이 분해되면서 동공 속에 포집되었던 가스가 방출되는 것을 확인하였다.

  • PDF

Solderability Evaluation and Reaction Properties of Sn-Ag-Cu Solders with Different Ag Content (Ag 함유량에 따른 Sn-Ag-Cu 솔더의 Solderability 및 반응 특성 변화)

  • Yu, A-Mi;Lee, Jong-Hyeon;Gang, Nam-Hyeon;Kim, Jeong-Han;Kim, Mok-Sun
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.169-171
    • /
    • 2006
  • Solderability and reaction properties were investigated for four Pb-free alloys as a function of Ag contents; Sn-4.0Ag-0.5Cu, Sn-3.0Ag-0.5Cu, Sn-2.5Ag-0.5Cu, and Sn-1.0Ag-0.5Cu. The alloy of the lowest Ag content, i.e., Sn-1.0Ag-0.5Cu, showed poor wetting properties as the reaction temperature decreased to 230oC. Variation of Ag concentration in the Sn-xAg-0.5Cu alloy shifted exothermic peaks indicating the undercooling temperature in DSC curve. For the aging process at 170oC, the thickness of IMCs at the board-side solder/Cu interface increased with the Ag concentration.

  • PDF

Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow (유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

Phase-change Temperature of Micro-encapsulated Phase-change Material (미립 피복 상변화 물질의 상변화 온도에 대한 연구)

  • 최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.168-174
    • /
    • 2002
  • In order to obtain a new heat transfer fluid having a high thermal capacity, micro-capsules of a phase-change material can be a successful candidate to be added into water. In this study, 25, 50, 100, and $200\mu$m diameter micro-encapsulated Lauric acids were tested by a differential scanning calorimeter. The Lauric acid itself had a single freezing curve, but the micro-encapsulated Lauric acid had double freezing curves. The second freezing dominated for $25\mu$m diameter Lauric acids. But the first freeing energy became big as the size of the capsule increased.