• Title/Summary/Keyword: under-determined system

Search Result 1,132, Processing Time 0.052 seconds

Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model (Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측)

  • Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

Changes in Methyl Pyrazines of Cocoa Beans during Microwave Roasting (Microwave Roasting에 의한 Cocoa Bean의 Methyl Pyrazine류의 변화)

  • Lee, Joo-Hee;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.654-658
    • /
    • 2000
  • Flavor components focused on the methyl pyrazines(2,3-dimethyl pyrazine, 2,3,5-trimethyl pyrazine, tetramethyl pyrazine) of microwave-roasted cocoa beans were determined and compared with those of conventionally-roasted cocoa beans. Domestic microwave oven was modified to design the microwave roasting system. Temperature measurement technique using thermocouple probes was developed to determine the center temperature of cocoa beans during microwave roasting. Microwave roasting was carried out under two different conditions. Under the first condition, roasting time was fixed to 30 min, while roasting temperature was varied to $110^{\circ}C,\;120^{\circ}C,\;130^{\circ}C,\;140^{\circ}C,\;and\;150^{\circ}C$ Under the second condition, roasting temperature was fixed to $130^{\circ}C$, while roasting time was varied to 5 min, 10 min, 20 min, and 30 min. Conventional roasting was done at $120^{\circ}C$ for 15 min as a reference. Amount of methyl pyrazines and their ratios were influenced by microwave roasting temperature and roasting time. The most suitable methyl pyrazine ratio of cocoa beans was obtained at $140^{\circ}C$ for 30 min of microwave roasting.

  • PDF

Ziziphus spina christifor Sustainable Agroforestry Farming in Arid Land of Khartoum State of Sudan

  • Mustafa Abdalla Nasre Aldin;Hussein Alawad Seid Ahmed;Mohamed El Mukhtar Ballal;Adil Mahgoub Farah
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.20-26
    • /
    • 2023
  • Cow pea (Vigna unguiculata) was intercropped with Ziziphus spina-christi as summer forage in two consecutive seasons of 2017 and 2018. The aims to find out suitable agroforestry practice for saline soils of Khartoum State. And to investigate effect of tree spacing on forage biomass yield under semi -irrigated systems. Completely randomized block design with 3 replicates was conducted for this trial. Thus Z.spina-christi that fixed at 4×4 m was intercropped with cowpea at 1 m and 1.5 m spacing from trees trunk. Tree growth parameters were measured in terms of tree height, tree collar diameter, tree crown diameter and fruit yield per tree. While crop were parameters were determined in terms of plant height, number of plant, forage biomass yield per ha and land equivalent ratio. Soil profile of 1×1 m and 1.5 m depth was excavated and its features were described beside its chemical and physical properties were analyzed for 0-10 cm, 0-30 cm, and 30-60 cm and 60-100 cm layers. The results revealed that soil pH, CaCO3, SAR, ESP, and EC ds/m were increased by increasing soil depths. Meanwhile tree growth in terms of tree height was significant in the first season 2017 when compared with tree collar diameter and tree crown diameter. Also significant differences were recorded for tree growth when compared with sole trees in the second season in 2018. Tree fruit showed marked variations between the two seasons, but it was higher under intercropping particularly at ZS2. Crop plant height was highly significant under sole cropping than intercropping in first season in 2017. In contrast forage biomass yield was significant under intercropping in ZS1 and ZS2 treatments. Land equivalent ratio was advantageous under this agroforestry system particularly under ZS2. Thus it recorded 5 and 9 for ZS2 in the two consecutive seasons respectively. Therefore, it is feasible to introduce this agroforestry system under such arid lands to provide summer forage yield of highly nutritive value and low cost for animals feed as well as to increase farmers' income and to halt desertification and to sequester carbon.

Development of System Dynamics model for Electric Power Plant Construction in a Competitive Market (경쟁체제 하에서의 발전소 건설 시스템 다이내믹스 모델 개발)

  • 안남성
    • Korean System Dynamics Review
    • /
    • v.2 no.2
    • /
    • pp.25-40
    • /
    • 2001
  • This paper describes the forecast of power plant construction in a competitive korean electricity market. In Korea, KEPCO (Korea Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company in Korea at present time. Fossil power companies are scheduled to be sold to private companies including foreign investors. Nuclear power company is owned and controlled by government. The competition in generation market will start from 2003. ISO (Independence System Operator will purchase the electricity from the power exchange market. The market price is determined by the SMP(System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners such as government are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies such as nuclear and coal plants. Large unclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT(Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investors behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investors behavior can be applied to the new investments for the power plant. Under these postulations, there is the potential for power plant construction to appear in waves causing alternating periods of over and under supply of electricity like commodity production or real estate production. A computer model was developed to sturdy the possibility that construction will appear in waves of boom and bust in Korean electricity market. This model was constructed using System Dynamics method pioneered by Forrester(MIT, 1961) and explained in recent text by Sternman (Business Dynamics, MIT, 2000) and the recent work by Andrew Ford(Energy Policy, 1999). This model was designed based on the Energy Policy results(Ford, 1999) with parameters for loads and resources in Korea. This Korea Market Model was developed and tested in a small scale project to demonstrate the usefulness of the System Dynamics approach. Korea electricity market is isolated and not allowed to import electricity from outsides. In this model, the base load such as unclear and large coal power plant are assumed to be user specified investment and only CCGT is selected for new investment by investors in the market. This model may be used to learn if government investment in new unclear plants could compensate for the unstable actions of private developers. This model can be used to test the policy focused on the role of unclear investments over time. This model also can be used to test whether the future power plant construction can meet the government targets for the mix of generating resources and to test whether to maintain stable price in the spot market.

  • PDF

Photoperiodic modulation of insect circadian rhythms

  • Tomioka, Kenji;Uwozumi, Kouzo;Koga, Mika
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.9-12
    • /
    • 2002
  • Circadian rhythms can be seen in a variety of physiological functions in insects. Light is a powerful zeitgeber not only synchronizing but also modulating the rhythm to adjust insect's temporal structure to seasonal changes in the environmental cycle. There are two general effects of the length of light phase within 24 hr light cycles on the circadian rhythms, i.e., the modulation of free-running period and the waveform. Since the photoperiodic modulation of the free-running period is induced even in the clock mutant flies, per$\^$s/, the free-running period is not fully determined genetically. In crickets, the ratio of activity (a) and rest phase (p) under the constant darkness (DD) is clearly dependent on the photoperiod under which they have been kept. When experienced the longer photoperiod it becomes smaller. The magnitude of change in a/p-ratio is dependent on the number of cycles they experienced. The neuronal activity of the optic lobe in DD shows the a/p-ratio changing with the preceding photoperiod. These data suggest that a single circadian pacemaker stores and maintains the photoperiodic information and that there is a system that accumulates the effects of single photoperiod to cause greater effects.

  • PDF

Link selection based on switching between full-duplex and half-duplex modes

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Multiple-input multiple-output systems can achieve a full sum rate (SR) via full duplex (FD). However, its performance is degraded by self-interference (SI) that occurs between the transmitter and receiver at the same node and thus is constrained by error floors. Conversely, half duplex (HD) can avoid the SI albeit at lower spectral efficiency, and the slope of its error curve is determined by the diversity order. In this study, a link selection scheme based on switching between FD and HD is examined as a simple method to improve the bit error rate (BER) performance of FD systems. In the proposed link selection algorithm, either FD or HD is selected based on the received minimum distance and signal-to-interference plus noise ratio. Simulation results indicate that the proposed hybrid FD/HD switching system offers significant BER performance improvement when compared with that of the conventional FD and FD based on only the received minimum distance under the same fixed SR. Under relatively sufficient SI cancellation, it is demonstrated to outperform the HD with a diversity advantage in low and medium signal-to-noise ratio region.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

Corrosion of Alumina-Chromia Refractories by Alkali Vapors; II. Experimenal Approach

  • Lee, Kyung-Ho;Jesse . Brown Jr
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.86-90
    • /
    • 1995
  • Theoretical predictions for thermodynamically stable phases which formed when alkali(sodium and potassium) vapors reacted with alumina-chromia refractories under coal gasifying atmosphere were confirmed experimentally using a laboratory-scale coal gasifying reaction system and a commercial alumina-chromia refractory using SEM, XRD, and EDAX. Alkali concentration profiles in the refractory as a function of time were also determined. The results showed that the compounds that formed were $X_2O{\cdot}Al_2O_3, X_2O{\cdot}Cr_2O_3, X_2O{\cdot}5Al_2O_3, X_2O{\cdot}7Al_2O_3, X_2O{\cdot}11Al_2O_3(X=Na^+ \;or\; K^+)$, depending upon the alkali concentration and time of exposure at high temperatures. The presence of sulfur in gasifying atmospheres did not appear to affect the alkali reaction produces. Alkali pentration into the alumina-chromia refractory was deep and the formation of the $Na_2O{\cdot}Al_2O_3/K_2O{\cdot}Al_2O_3$ compunds resulted in the serious deformation of the refractory due to the large volume expansion at the reaction surface. The hot face of the alumina-chromia refractory in service under an alkali environment is prone to failure by alkali attack.

  • PDF

CMAC (Cerebellar Model Arithmetic Controller)

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.675-681
    • /
    • 1989
  • As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, It is necessary to analyze the effects of the CMAC control parameters an the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with prespecified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.

  • PDF

An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine (모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.