• 제목/요약/키워드: under flow water

검색결과 1,373건 처리시간 0.031초

하나로 비상 보충수 공급계통의 노심 주입 냉각유량 해석 (THE ANALYTIC ANALYSIS OF THE CORE INJECTION COOLING FLOW RATE FOR EMERGENCY WATER SUPPLY SYSTEM IN HANARO)

  • 박용철;김봉수;김경연;우종섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.39-44
    • /
    • 2005
  • In HANARO, a multi-purpose research reactor of 30 MWth, the emergency water supply system consists essentially of an emergency water storage tank located in the level of about thirteen meter (13 m) above the reactor core, a three inch ('3\%') diameter water injection pipe line including injection valves from the tank to the reactor cooling inlet pipe and a test loop to do periodic system performance test. When the water level of the reactor pool comes down to the extremely low due to a loss of reactor pool water accident the emergency water stored in the tank should be fed to the core by the gravity force and at that time the design flow rate is eleven point four kilogram per second (11.4 kg/s). But it is impossible periodically to measure the injection flow rate under the emergency condition because the normal water level should be maintained during the reactor operation. This paper describes a flow network analysis to simulate the flow rate under the emergency condition. As results, it was confirmed through the analysis results that the calculated flow rate agrees with the design requirement under the emergency condition.

  • PDF

20~50mm 수도계량기 미감지율 조사분석 (Investigation on Under-registration of 20 mm to 50 mm Water Meters)

  • 안재찬;하성호;박태준;김석정;구자용
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.582-594
    • /
    • 2005
  • The under-registration of water meters of 20mm to 50mm in diameter, installed in Seoul city, was estimated by random sample method. The sample sites and sampled meters were selected for the measurements of flow rates and accuracy tests, respectively. The measurement of flow rates was conducted for 20mm to 50mm meters for about 20 days per site using flow meters and data loggers. The under-registration of 20mm, 25mm, 32mm, 40mm, and 50mm meters was observed as 3.96%, 1.10%, 2.47%, 4.04%, and 1.04%, respectively. The under-registration might be increased more or less as malfunction and failure of the sampled meters was not considered. In this study the under-registration of 20mm, 25mm, 32mm, 40mm, and 50mm meters was accurately estimated on the basis of the investigation data. The estimation of under-registration of water meters, one of the basic figures in water industry, contributed to accurate calculation of leakage, water supply and consumption, and strategic planning to reduce the unaccounted-for water.

플러딩 조건 하에서의 고분자전해질형 연료전지 GDL 표면과 공기극 유로 채널에서의 물방울 유동 특성 고찰 (Investigation of Water Droplet Behaviour on GDL Surface and in the Air Flow Channel of a PEM Fuel Cell under Flooding Conditions)

  • 김한상;민경덕
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.476-483
    • /
    • 2012
  • Proper water management is crucial for the efficient operation of polymer electrolyte membrane (PEM) fuel cell. Especially, for automotive applications, A novel water management that can avoid both membrane dry-out and flooding is a very important task to achieve good performance and efficiency of PEM fuel cells. The aim of this study is to investigate the liquid water behavior on the gas diffusion layer (GDL) surface and in the cathode flow channel of a PEM unit fuel cell under flooding conditions. For this purpose, a transparent unit fuel cell is devised and fabricated by modifying the conventional PEM fuel cell design. The results of water droplet behavior under flooding conditions are mainly presented. The water distributions in the cathode flow channels with cell operating voltage are also compared and analyzed. Through this work, it is expected that the data obtained from this fundamental study can be effectively used to establish the basic water management strategy in terms of water removal from the flow channels in a PEM fuel cell stack.

수압을 받는 콘크리트의 투수성에 관한 연구 (Study on the Permeability of Concrete under Water Pressure)

  • 유조형;이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.719-722
    • /
    • 2005
  • The watertightness of concrete is judged by the depth of penetration of water forced in under pressure with the mechanism of flow of seepage water examined theoretically and experimentally. As a result, it is found that in the case of low water pressure approximately 0.15Mpa or less, the flow is Darcy seepage flow, the same as flow in an ordinary sand stratum, whereas in the case of high water pressure, the flow is diffused seepage flow accompanied by internal deformation of concrete. It is suggested that the watertightness of concrete be evaluated by seepage coefficient in the case of the former and diffusion coefficient in the case of the latter.

  • PDF

Critical Heat Flux and Flow Pattern for Water Flow in Annular Geometry

  • Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.224-229
    • /
    • 1996
  • An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced- circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m. inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, chum-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow.

  • PDF

지류하천의 유황분석을 통한 BOD5 농도변화 유형 분석 (Study of BOD5 Variation Patterns with Flow Regime Alteration in the Tributaries)

  • 정우혁;김영일;김홍수;문은호;박상현;이상진;정상만;조병욱;최정호
    • 한국물환경학회지
    • /
    • 제27권4호
    • /
    • pp.499-508
    • /
    • 2011
  • We analyzed the variations of water quality with flow regime alterations to determine the characteristics of the stream where the stream management is considerably difficult due to the high variability of the flow rates. In this study, both flow rates and water qualities were monitored at the tributaries, 34 in count, of both Geum River and Sabgyo Lake Basins. The variation of water qualities were divided into 2 types, based on their stream flow rates, known as Type I and Type II. If the water quality of a stream increases during low flow rate periods compared with high flow rate periods, it is classified as Type I; if the water quality of the stream increases during high flow rate periods compared with low flow rate periods, it falls under Type II. The analysis for the variations of water qualities, of all 43 basins, resulted to 24 basins under Type I and Nineteen 19 basins under Type II. The variations of water qualities were analyzed first by using Regression Analysis followed by Statistical Analysis. The average slope of the variations of water qualities and the slope of the standard deviations were 0.00135 and 0.00477, respectively. The Probability Distributions of both Type I and Type II basins were 61.1% and 38.9%, respectively. The basin having a probability distribution of 61.1% and is also known as Type I, increases during periods of low flow rates, due to the presence of point sources. Therefore, the basin should be enforced with stream management. Before the stream management can be implemented in all streams falling under Type II, the sources of contaminants should first be estimated. These contaminants can be classified into two parts, the first is Point source pollution and the second is Non-point source pollution, where the Non-Point source pollution can be sub-divided into two types, with storm runoff and without storm runoff.

Mitigation of Flooding under Externally Imposed Oscillatory Gas Flow

  • Lee, Jae-Young;Chang, Jen-Shih
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.475-479
    • /
    • 1995
  • During the hypothetical loss of coolant accident in the nuclear power plant the emergency core cooling water could not penetrate to the reactor core when the steam flow rate from the reactor core exceeds CCFL (Countercurrent flow limitation). The CCFL generated by earlier investigators are developed under the steady gas flow. However the flow instability in the reactor loop could generate oscillatory steam flow, hence their applicability under oscillating flow should be investigated. In this work, an experimental investigation of countercurrent flow in the vertical flow channel has been conducted under oscillatory gas flow. Pulsation of gas under oscillatory flow disturbs the flow pattern significantly and prevents flooding (CCFL) when its minimum value is less than the threshold gas flow rate value.

  • PDF

유동방향 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구 (Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Direction)

  • 이필형;한상석;황상순
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.51-58
    • /
    • 2008
  • 고분자 전해질 연료전지의 성능향상을 위한 방법으로 유동채널의 형상을 변경한 많은 연구가 진행되어 왔으나 동일한 유동채널 형상에서 유동방향 변경에 따른 연구는 많이 진행되지 못하였다. 본 연구에서는 동일한 반응면적과 동일한 유동채널의 고분자 전해질 연료전지의 수소와 산소의 유동방향을 Co-flow에서 Counter-flow로 변경될 경우의 연료전지의 성능변화를 분석하기 위하여 연료극과 공기극이 포함된 3차원 수치해석모델을 개발하였다. 개발된 수치해석모델을 활용하여 Co-flow와 Counter-flow의 유동채널 내부의 압력손실, 반응물질의 농도분포, 고분자 전해질 막을 통한 Water Transport, 고분자 전해질 막의 이온전도도 및 I-V 성능곡선을 비교하였다. 그 결과 반응물질의 농도분포, Water Transport, 고분자 전해질 막의 이온전도도가 우수한 Counter-flow 유동조건에서의 성능이 Co-flow 유동조건에 비하여 더욱 우수하였다.

Research on flow characteristics in supercritical water natural circulation: Influence of heating power distribution

  • Ma, Dongliang;Zhou, Tao;Feng, Xiang;Huang, Yanping
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1079-1087
    • /
    • 2018
  • There are many parameters that affect the natural circulation flow, such as height difference, heating power size, pipe diameter, system pressure and inlet temperature and so on. In general analysis the heating power is often regarded as a uniform distribution. The ANSYS-CFX numerical analysis software was used to analyze the flow heat transfer of supercritical water under different heating power distribution conditions. The distribution types of uniform, power increasing, power decreasing and sine function are investigated. Through the analysis, it can be concluded that different power distribution has a great influence on the flow of natural circulation if the total power of heating is constant. It was found that the peak flow of supercritical water natural circulation is maximal when the distribution of heating power is monotonically decreasing, minimal when it is monotonically increasing, and moderate at uniform or the sine type of heating. The simulation results further reveal the supercritical water under different heat transfer conditions on its flow characteristics. It can provide certain theory reference and system design for passive residual heat removal system about supercritical water.

Flow characteristics after water inrush from the working face in karst tunneling

  • Wu, J.;Li, S.C.;Xu, Z.H.;Pan, D.D.;He, S.J.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.407-419
    • /
    • 2018
  • In order to investigate flow characteristics after water inrush from the working face in process of karst tunnel construction, numerical calculation for two class case studies of water inrush is carried out by using the FLUENT software on the background of Qiyueshan tunnel. For each class water inrush from the tunnel face, five cases under different water-inrush velocity are simulated and researched. Three probing lines are selected respectively in the left tunnel, cross passage, right tunnel and in the height direction of the tunnel centerline. The variation characteristics of velocity and pressure on each probing line under the five water-inrush velocities are analyzed. As for the selected four groups probing lines in the tunnels, the change rules of velocity and pressure on each group probing lines under the same water-inrush velocity are discussed. Finally, the water flow characteristics after inrush from the tunnel face are summarized by comparing the case studies. The results indicate that: (1) The velocity and pressure change greatly at the intersection area of the cross passage and the tunnels. (2) The velocity nearby the tunnel side wall is the minimum, while it is the maximum in the middle position. (3) The pressure value of every cross section in the tunnels is basically fixed. (4) As water-inrush velocity increases, the flow velocity and pressure in the tunnels also increase. The former is approximately proportional to their respective water-inrush velocity, while the latter is not. The research results provide a theoretical basis for making scientific and rational escape routes.