• 제목/요약/키워드: uncountable set

검색결과 7건 처리시간 0.021초

DISTRIBUTIONAL CHAOS AND DISTRIBUTIONAL CHAOS IN A SEQUENCE OCCURRING ON A SUBSET OF THE ONE-SIDED SYMBOLIC SYSTEM

  • Tang, Yanjie;Yin, Jiandong
    • 대한수학회보
    • /
    • 제57권1호
    • /
    • pp.95-108
    • /
    • 2020
  • The aim of this paper is to show that for the one-sided symbolic system, there exist an uncountable distributively chaotic set contained in the set of irregularly recurrent points and an uncountable distributively chaotic set in a sequence contained in the set of proper positive upper Banach density recurrent points.

THE SET OF RECURRENT POINTS OF A CONTINUOUS SELF-MAP ON AN INTERVAL AND STRONG CHAOS

  • Wang, Lidong;Liao, Gongfu;Chu, Zhenyan;Duan, Xiaodong
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.277-288
    • /
    • 2004
  • In this paper, we discuss a continuous self-map of an interval and the existence of an uncountable strongly chaotic set. It is proved that if a continuous self-map of an interval has positive topological entropy, then it has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic.

CHARACTERISTIC MULTIFRACTAL IN A SELF-SIMILAR CANTOR SET

  • Baek, In Soo
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.157-163
    • /
    • 2008
  • We study essentially disjoint one dimensionally indexed classes whose members are distribution sets of a self-similar Cantor set. The Hausdorff dimension of the union of distribution sets in a same class does not increases the Hausdorff dimension of the characteristic distribution set in the class. Further we study the Hausdorff dimension of some uncountable union of distribution sets.

  • PDF

ANOTHER COMPLETE DECOMPOSITION OF A SELF-SIMILAR CANTOR SET

  • Baek, In Soo
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.157-163
    • /
    • 2008
  • Using informations of subsets of divergence points and the relation between members of spectral classes, we give another complete decomposition of spectral classes generated by lower(upper) local dimensions of a self-similar measure on a self-similar Cantor set with full information of their dimensions. We note that it is a complete refinement of the earlier complete decomposition of the spectral classes. Further we study the packing dimension of some uncountable union of distribution sets.

  • PDF

UNIFORM DISTRIBUTIONS ON CURVES AND QUANTIZATION

  • Joseph Rosenblatt;Mrinal Kanti Roychowdhury
    • 대한수학회논문집
    • /
    • 제38권2호
    • /
    • pp.431-450
    • /
    • 2023
  • The basic goal of quantization for probability distribution is to reduce the number of values, which is typically uncountable, describing a probability distribution to some finite set and thus to make an approximation of a continuous probability distribution by a discrete distribution. It has broad application in signal processing and data compression. In this paper, first we define the uniform distributions on different curves such as a line segment, a circle, and the boundary of an equilateral triangle. Then, we give the exact formulas to determine the optimal sets of n-means and the nth quantization errors for different values of n with respect to the uniform distributions defined on the curves. In each case, we further calculate the quantization dimension and show that it is equal to the dimension of the object; and the quantization coefficient exists as a finite positive number. This supports the well-known result of Bucklew and Wise [2], which says that for a Borel probability measure P with non-vanishing absolutely continuous part the quantization coefficient exists as a finite positive number.

연속확률분포의 정의와 도입 방법에 대한 2009개정 교육과정과 2015개정 교육과정의 비교 분석 연구 (A comparative analysis of the 2009-revised curriculum and 2015-revised curriculum on the definition and introduction of continuous probability distribution)

  • 허남구
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권4호
    • /
    • pp.531-543
    • /
    • 2019
  • 본 연구는 2009개정 교육과정과 2015개정 교육과정을 반영한 교과서에서 연속확률분포를 정의하고 도입하는 방법에 대해 비교 분석하였다. 2015개정 교육과정을 반영한 확률과 통계 교과서는 연속확률변수를 가부번집합인 확률변수로 정의하기보다는 특정 범위의 모든 실숫값을 가지는 확률변수로 정의하였다. 또한 연속확률분포를 도입함에 있어 균등분포를 이용한 방법과 상대도수밀도를 이용한 방법을 사용하였다.