• Title/Summary/Keyword: unconfined compression

Search Result 281, Processing Time 0.029 seconds

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.

Strength Prediction of Cement-Admixed using Low Plasticity Silt (저소성실트를 이용한 시멘트 혼합토의 강도 예측)

  • Park, Jongchan;Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Park, Kyunghan;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.31-38
    • /
    • 2014
  • For analysis of mechanics properties of soil cement, unconfined compressive strength has been proposed by existing case studies. In this study, mechanical changes with water content of silt, curing time and cement content were analyzed through unconfined compressive strength test. In addition, the changes for B factor by Abrams were compared with existing case studies after the prediction equations could be proposed about the unconfined compressive strength of admixed cement soil. Especially, the B constant factor was changed with soil characteristics and curing time. For analysis results of appropriateness status and unconfined compressive strength, consideration of variable form was titrated. The prediction equations at low plasticity silt admixed using the uniaxial compressive strength with applying Abrams's equation and considering cement content, curing time is proposed.

Evaluation of Mechanical Properties for the Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 역학 물성 평가)

  • Yoon, Seok;Hong, Chang-Ho;Kim, Taehyun;Kim, Jin-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.5-11
    • /
    • 2021
  • The compacted bentonite buffer is one of the most important components in an engineered barrier system (EBS) to dispose of high-level radioactive waste (HLW) produced by nuclear power generation. The compacted bentonite buffer has a crucial role in protecting the disposal canister against the external impact and penetration of groundwater, so it has to satisfy the thermal-hydraulic-mechanical requirements. Even though there have been various researches on the investigation of thermal-hydraulic properties, few studies have been conducted to evaluate mechanical properties for the compacted bentonite buffer. For this reason, this paper conducted a series of unconfined compression tests and obtained mechanical properties such as unconfined compressive strength, elastic modulus, and void ratio of Korean compacted bentonite specimens with different water content and dry density values. The unconfined compressive strength and elastic modulus increased, and the Poisson's ratio decreased a little with increasing dry density. It showed that unconfined compressive strength and elastic modulus were proportional to dry density. However, there was not a remarkable correlation between mechanical properties and water content.

Evaluation of Strength Parameters of Cemented Sand (고결모래의 강도정수 평가)

  • Lee, Hoon-Joo;Choi, Sung-Kun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.91-100
    • /
    • 2008
  • This study proposes the equations evaluating the shear strength of cemented sand by analytical interpretation based on Mohr-Coulomb failure criteria, and verifies them using the results of triaxial and unconfined compression tests. The internal friction angle of cemented sand is identical to that of uncemented one regardless of the stress level, while the cohesion intercept of cemented sand is constant before the breakage of cementation bonds. Therefore, the shear strength of cemented sand can be represented as a summation of the shear strength of uncemented sand and the unconfined compressive strength of cemented sand. In addition, the cohesion intercept of cemented specimen can be expressed as a function of unconfined compressive strength and friction angle. In the transition zone, assuming a constant shear strength, the equations to evaluate shear strength and cohesion intercept of cemented sand are also represented. It is observed that the predicted values using these solutions agree well with the experimental results. The experimental results also show a linear relationship between the unconfined compressive strength and the breaking point of cementation bonds.

Pull-out Resistance Characteristics of the Anchor Bar According to the Grouting Material (주입재료에 따른 Anchor Bar의 인발저항 특성)

  • Yea, Geu-Guwen;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • In this study, the pull out resistance characteristics of an anchor bar to support a spillway installed in a slope are investigated by field tests. The injection materials were a cement mortar and cement milk. Unconfined compression strengths of those materials under several conditions were measured. As the result of compression test, the unconfined compression strengths of the cement mortar and the cement milk have positive proportional relation-ship with the water-cement ratio. They also have negative proportional relationship with increasing the curing time. In the same condition of water-cement ratio and curing time, the unconfined compression strength of cement milk is larger than that of cement mortar. In order to reduce the eccentricity in anchor bar during pull-out test in the field, the installation apparatus was improved by inserting a nut type of steel fixing coupling into the anchor bar. As the result of the pull-out test, the strength modification of cement milk was increased steeply at the early curing time. However, that of cement mortar was increased gradually with passing the curing time. Therefore, the cement milk has to use as the injection material for a prompt construction of anchor bar because the strength modification of cement milk is occurred at the early curing time.

Unconfined compressive strength of PET waste-mixed residual soils

  • Zhao, Jian-Jun;Lee, Min-Lee;Lim, Siong-Kang;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 2015
  • Plastic wastes, particularly polyethylene terephthalate (PET) generated from used bottled water constitute a worldwide environmental issue. Reusing the PET waste for geotechnical applications not only reduces environmental burdens of handling the waste, but also improves inherent engineering properties of soil. This paper investigated factors affecting shear strength improvement of PET-mixed residual soil. Four variables were considered: (i) plastic content; (ii) plastic slenderness ratio; (iii) plastic size; and (iv) soil particle size. A series of unconfined compression tests were performed to determine the optimum configurations for promoting the shear strength improvement. The results showed that the optimum slenderness ratio and PET content for shear strength improvement were 1:3 and 1.5%, respectively. Large PET pieces (i.e., $1.0cm^2$) were favorable for fine-grained residual soil, while small PET pieces (i.e., $0.5cm^2$) were favorable for coarse-grained residual soil. Higher shear strength improvement was obtained for PET-mixed coarse-grained residual soil (148%) than fine-grained residual soils (117%). The orientation of plastic pieces in soil and frictional resistance developed between soil particles and PET surface are two important factors affecting the shear strength performance of PET-mixed soil.

Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout

  • Lee, Changho;Nam, Hongyeop;Lee, Woojin;Choo, Hyunwook;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.343-352
    • /
    • 2019
  • For quality control and the economical design of grouted sand, the prior establishment of the unconfined compressive strength (UCS) estimating formula is very important. This study aims to develop an empirical UCS estimating formula for grouted sand based on the physical properties of sands and the UCS of cured pure grout. Four sands with varying particle sizes were grouted with both microfine cement and Ordinary Portland cement. Grouted specimens were prepared at three different relative densities and at three different water-to-cement ratios, and unconfined compression tests were performed. The results demonstrate that UCS of grouted sand can be expressed as the power function of the UCS of cured pure grout: $UCS_{grouted\;sand}/1MPa=A_{soil}{\cdot}(UCS_{pure}/1MPa)^N$. Because the exponent N strongly depends on the combination of pore area and pore size, N is expressed as the function of porosity (n) and specific surface ($S_a$). Additionally, because $S_a$ determines the area of the sand particle that cement particles can adsorb and n determines the number of cementation bondings between sand particles, $A_{soil}$ is also expressed as the function of n and $S_a$. Finally, the direct relationship between $A_{soil}$ and N is also investigated.

Mechanical behaviours of biopolymers reinforced natural soil

  • Zhanbo Cheng ;Xueyu Geng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.179-188
    • /
    • 2023
  • The mechanical behaviours of biopolymer-treated soil depend on the formation of soil-biopolymer matrices. In this study, various biopolymers(e.g., xanthan gum (XG), locust bean gum (LBG), sodium alginate (SA), agar gum (AG), gellan gum (GE) and carrageenan kappa gum (KG) are selected to treat three types of natural soil at different concentrations (e.g., 1%, 2% and 3%) and curing time (e.g., 4-365 days), and reveal the reinforcement effect on natural soil by using unconfined compression tests. The results show that biopolymer-treated soil obtains the maximum unconfined compressive strength (UCS) at curing 14-28 days. Although the UCS of biopolymer-treated soil has a 20-30% reduction after curing 1-year compared to the maximum value, it is still significantly larger than untreated soil. In addition, the UCS increment ratio of biopolymer-treated soil decreases with the increase of biopolymer concentration, and there exists the optimum concentration of 1%, 2-3%, 2%, 1% and 2% for XG, SA, LBG, KG and AG, respectively. Meanwhile, the optimum initial moisture content can form uniformly biopolymer-soil matrices to obtain better reinforcement efficiency. Furthermore, the best performance in increasing soil strength is XG following SAand LBG, which are significantly better than AG, KG and GE.

Lateral loading test for partially confined and unconfined masonry panels

  • Tu, Yi-Hsuan;Lo, Ting-Yi;Chuang, Tsung-Hua
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.379-390
    • /
    • 2020
  • Four full-scaled partially confined and unconfined masonry panels were tested with monotonic lateral loads. To study the effects of vertical force and boundary columns, two specimens with no boundary columns were subjected to different vertical forces, while two wing-wall specimens had the column placed eccentrically and in the middle, respectively. The specimens with no boundary columns exhibited ductile rocking behavior, where the lateral strength increased with increasing vertical compression. The wing-wall specimens with columns behaved as strut-and-tie systems. The column-panel interaction resulted in greater strength, lower deformation capacity and differences in failure modes. A comparison with analytical models showed that rocking strength can be accurately estimated using vertical force and the panel aspect ratio for panels with no boundary columns. The estimation for lateral strength on the basis of a panel section area indicated scattered error for wing-wall specimens.

Flexural ductility of RC beam sections at high strain rates

  • Pandey, Akhilesh K.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.537-552
    • /
    • 2013
  • Computation of flexural ductility of reinforced concrete beam sections has been proposed by taking into account strain rate sensitive constitutive behavior of concrete and steel, confinement of core concrete and degradation of cover concrete during load reversal under earthquake loading. The estimate of flexural ductility of reinforced concrete rectangular sections has been made for a wide range of tension and compression steel ratios for confined and unconfined concrete at a strain rate varying from $3.3{\times}10^{-5}$ to 1.0/sec encountered during normal and earthquake loading. The parametric studies indicated that flexural ductility factor decreases at increasing strain rates. Percentage decrease is more for a richer mix concrete with the similar reinforcement. The confinement effect has marked influence on flexural ductility and increase in ductility is more than twice for confined concrete (0.6 percent volumetric ratio of transverse steel) compared to unconfined concrete. The provisions in various codes for achieving ductility in moment resisting frames have been discussed.