• Title/Summary/Keyword: unconfined compression

Search Result 281, Processing Time 0.025 seconds

Ductility of Circular Hollow Columns with Internal Steel Tube (강관 코아 합성 중공 기둥의 연성 거동 연구)

  • 강영종;한승룡;박남회
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

A Comparative Study on the Structural Characteristics of the Stabilized Soils with Ca, Al System Admixtures. (Ca, Al계 안정처리토의 구조적 특성의 비교)

  • Jeong, Du-Yeong;Choe, Gil-Yeol;Lee, Byeong-Seok
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.5-14
    • /
    • 1986
  • The results of stabilization process in silty.clays and sand-silts, which were, respectively, treated with Calcium hydroxide of the Calcium series and Aluminium Sulphate of the Aluminium series are follows. 1) In the former case used calcium hydrate and calcium cabonate for silty-clays, calcium aluminnium cabonate oxide hydrate and calcium carbonate for sandy-silts were produced 2) In the latter case used Aluminium Sulphate, by X-ray diffraction test, it was found that Aluminium Oxide was produced both in silty-clays and sandy-silts 3) As the results of stabilization process, in the former case, unconfined compression strength was increased greatly but in the latter case it was little increased.

  • PDF

A Study on the Effect of Transportation and Storage on Sample Disturbance (시료의 이동과 보관이 시료 교란에 미치는 영향에 관한 연구)

  • Kim, Byoung-Il;Lee, Seung-Hyun;Yoo, Wan-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1159-1165
    • /
    • 2007
  • This study aims to determine the effects of sample movement and storage on sample disturbance. To this end, non-disturbed samples collected from the OOregion, Gwangyang City, Jeonranam-do. Then, unconfined compression and consolidation tests were performed on the samples in the field, Seoul Lab and Seoul Lab after 4 weeks. Based on failure strain rate$(\epsilon_f)$, volume strain rate$(\epsilon_{\nu})$, and void ratio change$({\Delta}e/e_0)$ obtained from the test results, sample disturbance was evaluated. The sample disturbance level was used to compare and analyze the influences of transportation and storage on sample disturbance.

  • PDF

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad;Nejati, Hamid Reza;Goshtasbi, Kamran;Nazerigivi, Amin
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.535-547
    • /
    • 2022
  • Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.

Engineering Characteristics of Stabilized Bed Sediment (안정처리된 하상토의 공학적 특성)

  • Kim, Jin-Man;Kim, Kyung-Min;Choi, Bong-Hyuck;Kim, Hak-Sam;Han, Sang-Hyun;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.101-112
    • /
    • 2007
  • This paper presents the results of an investigation on the ways of utilizing bed sediment as levee materials by laboratory tests. A series of laboratory tests were performed to asses the improved engineering characteristics of bed sediment using admixture cement and weathered granite soils. In this study, several tests such as the grain size analysis test, direct shear test, permeability test, unconfined compression test were peformed. The results of the analyses indicated that the treated bed sediment with cement and weathered granite soils can have the adaptability to the fill material for levee.

Application of EPS Considering Long-term Durability (장기내구성을 고려한 EPS의 현장 적용성)

  • Chun, Byungsik;Jung, Changhee;Ahn, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • L/EPS, manufactured in the shape of block and used for civil engineering, is a lightweight material with an excellent resistance to compression, and provides a superb self-sufficient stability. EPS is a suitable material capable of resolving the problem of settlement and lateral flow if it is applied as the soil on soft ground. The Korean Standards (KS) has not yet proposed any testing method for use of EPS as an engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. The design criteria for EPS has been established and applied through the trial construction of KHC (Korea Highway Corporation) and quality test of manufacturer, but most studies on them have been confined to factory products. This study is focused on comparing and analyzing long-term durability by conducting cyclic load test, freezing and thawing test, absorption rate test and others. EPS used in the test was chosen from construction sites and factory products, focusing on the long-term durability of EPS depending on the passage of time. Unconfined compression test results indicated that the strength of collected samples was lower than factory products. While the triaxial compression test results indicated that the shear strength increased in proportion to the increase of confining pressure, and factory products had declining shear strength as the confining pressure rose.

  • PDF

Studies on the Engineering Characteristics of Alluvial Clayey Deposits in the Bay Area of Asan (II) (아산만지역 충적점토의 토질특성에 관한 연구(II))

  • 유능환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.55-66
    • /
    • 1988
  • This study was conducted to investigate the various engineering properties and correlationshops among the soil constants of alluvial clayey deposits distributed in the bay of Asan and their results are summarized as follows : 1. Grain size distribution of soil was consisted of 12 % of clay, 46-73 % of silt, 2-23 % of sand, and as for the consistency characteristics, 26-36 % of liquid limit, 18-21 % of plastic limit and 6-16 % of plastic index, and so the soil belonging to as a lower plastic nonorganic clay, it's specific gravity was 2,66-2.70, and the location on the plastic chart was approximately above the A-line. Z The natural moisture content and unit weight were 30-43 % and 1.76-1.87 g I cm$_3$, respectively, and according to increment of natural moisture content, the unit weight was decreased, and the initial void ratio and degree of saturation were shown of 0,87-1119 and 92- 100 %, most of saturated. 3. Cone resistance value which was shown 2.4 - 6.5 kg / $cm^2$ was a little lower and it was increased with the depth of layer and shown the formular $q_c=0.7_z+1.32$. 4. Unconfined compression strength was about 0.18-0.43kg /$cm^2$, cu, 0.1-0.22kg / $\psi$, $2-6^{\circ}$ under uu-test condition of triaxial, and CCU, 0.08-0.3 kg/cm , $\psi$, $12-18^{\circ}$ under the condition of cu-test. 5. Pre-consolidation load of characteristics of consolidation was 0.4-0.8 kg / $cm^2$, compression index, about 0.17-0.33. 6. Liquid limit and plastic index were incresased with the increment of clay content but most of alluvial clay was appeared as a normal through non-activity clay soil shown more natural moisture content than liquid limit, and their relationship as follows : LL=0.38( cy+54.8), PI=0.836(LL -17.8), PI =0.468(LL -0.48) 7. The initial void ratio presented correlationship of positive among clay content, natural moisture content and liquid limit, and that of reverse with unit weight, and their results as follws : $e_o=0.024(w_n+0.2)$, $e_o=e_o=0.0003c_y+0.0005 LL+0.0151 W_n+\frac{3.58}{r-t}-1.52$ 8. It was shown that the compression index has correlationship of postive among the clay content, liquid limit, plastic index, natural moisture content and initial void ratio, and their relationships as follows ; $c_c=0.44(e_o-0.47)$, $c_c=0.001$

  • PDF

Comparison of Short-term Mechanical Characteristics of Fine-grained Soils Treated with Lime Kiln Dust and Lime (석회노분과 석회로 처리된 세립토의 단기적 역학특성 비교)

  • 김대현;사공명;이용희
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.75-83
    • /
    • 2004
  • The Indiana Department of Transportation (INDOT) has permitted the use of Lime Kiln Dust (LKD) as a low-cost construction material in creating a workable platform for soil modification (not for soil stabilization) since the early 1990s on selected projects. However, the enhanced strength of soils with LKD has not been accounted for in the subgrade stability calculations in the design process. This study was initiated to evaluate how the lime kiln dust is a comparable material to hydrated lime. A series of laboratory tests were performed to assess the mechanical benefits of lime kiln dust in combination with various predominant fine grained soils encountered in the State of Indiana, such as A-4, A-6 and A-7-6. In the course of this study, several tests such as the Atterberg limits, standard Proctor, unconfined compression, CBR, volume stability, and resilient modulus were performed. As a result, mixtures of fine grained soils with 5% lime or 5% LKD substantially improve unconfined compressive strength up to 60% - 400%. CBR values for treated soils are in the range of 25 to 70 while those for untreated soils range from 3 to 18. In general, significant increase in resilient moduli of the soils treated with lime and LKD was observed. This indicates that lime kiln dust may be a viable, cost effective alternative to hydrated lime in enhancing the strength of fine grained soils.

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.