• Title/Summary/Keyword: unconfined compression

Search Result 281, Processing Time 0.023 seconds

Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils according to Degree of Saturations and Silt Fractions (포화도와 실트 함량에 따른 동결토의 부동 수분량 및 일축압축강도 특성)

  • Kim, Sang Yeob;Hong, Won-Taek;Hong, Seung Seo;Baek, Yong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.59-67
    • /
    • 2016
  • The strength of frozen soils is affected by size and shape of particles, and the amount of ice and unfrozen water. The objective of this study is to characterize the unfrozen water content and the unconfined compressive strength of the frozen soils according to the degree of saturations and silt fractions. The specimens are mixtures of sand, silt, and water. The silt fractions (SF), which are the ratio of the silt weight ($W_{silt}$) to the sand weight ($W_{sand}$), are 10% and 30%. In addition, the degrees of the saturation are 5%, 10%, 15%, and 20%. The specimens are frozen under the temperature of $-10^{\circ}C$ conditions. The uniaxial compression tests are conducted for 24 hours, 48 hours, and 72 hours after freezing to determine proper freezing time. The freezing time of 24 hours is chosen because the unconfined compressive strengths of specimens after 24 hours freezing times are similar to each other. Furthermore, the unfrozen water content is monitored during freezing using the TDR system. The unfrozen water content increases with the increase of the silt fraction and degree of saturation. The unconfined compressive strength of the frozen soils exponentially increases with increasing the degree of saturation. This study shows that the amount of ice has more influence on the strength of the frozen soils than the amount of unfrozen water.

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.

Development of Soil Binder Using Plant Extracts (식물추출액을 이용한 지반 고결제 개발)

  • Park, Sung-Sik;Choi, Sun-Gyu;Nam, In-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.67-75
    • /
    • 2012
  • This paper presents an environment-friendly sand cementation method by precipitating calcium carbonate using plant extracts. The plant extracts contain urease like $Sporosarcina$ $pasteurii$, which can decompose urea into carbonate ion and ammonium ion. It can cause cementation within sand particles where carbonate ions decomposed from urea combine with calcium ions dissolved from calcium chloride or calcium hydroxide to form calcium carbonate. Plant extracts, urea and calcium chloride or calcium hydroxide were blended and then mixed with Nakdong River sand. The mixed sand was compacted into a cylindrical specimen and cured for 3 days at room temperature ($18^{\circ}C$). Unconfined compression test, SEM and XRD analyses were carried out to evaluate three levels of urea concentration and two different calcium sources. As urea concentration increased, the unconfined compressive strength increased up to 10 times those without plant extracts because calcium carbonate precipitated more, regardless of calcium source. It was also found that the strength of specimen using calcium chloride was higher than that of specimen using calcium hydroxide.

RUBBER INCLUSION EFFECTS ON MECHANICAL PROPERTIES OF RUBBER-ADDED COMPOSITE GEOMATERIAL

  • Kim, Yun-Tae;Gang, Hyo-Seb
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.129-134
    • /
    • 2010
  • This paper investigates effects of rubber inclusion on the strength and physical characteristics of rubber.added composite geomaterial (CGM) in which dredged soils, crumb rubber, and bottom ash are reused for recycling. Several series of test specimens were prepared at 5 different percentages of rubber content (i.e. 0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil) and three different percentages of bottom ash content (i.e. 0%, 50% and 100% by weight of the dry dredged soil). The mixed soil specimens were subjected to unconfined compression test and elastic wave test to investigate their unconfined compressive strengths and small strain properties. The values of bulk unit weight of the CGM with bottom ash content of 0% and 100% decrease from 14kN/$m^3$ to 11kN/$m^3$ and 15kN/$m^3$ to 12kN/$m^3$, respectively, as rubber content increases, because the rubber had a specific gravity of 1.13. The test results indicated that the rubber content and bottom ash content were found to influence the strength and stress-strain behavior of CGM. Overall, the unconfined compressive strength, and shear modulus were found to decrease with increasing rubber content. Among the samples tested in this study, those with a lower rubber content exhibited sand-like behavior and a higher shear modulus. Samples with a higher rubber content exhibited rubber-like behavior and a lower shear modulus. The CGM with 100% bottom ash could be used as alternative backfill material better than CGM with 0% bottom ash. The results of elastic wave tests indicate that the higher rubber content, the lower shear modulus (G).

  • PDF

The Factors Affecting the Unconfined Compressive Strength of C.S.G Materials (C.S.G 재료의 일축압축강도에 미치는 영향인자)

  • Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.33-45
    • /
    • 2006
  • C.S.G is a material made by adding cement and water to rock-like material such as riverbed gravel or excavation muck that can be obtained easily near dam si. Recently, the use of C.S.G is gradually increasing as the construction material for dam, road, revement and so on. Commonly, the strength characteristics of C.S.G is affected by various influence factors such as grade, unit cement, age and water contents. In this study, a series of compaction test and unconfined compressive strength test were performed to investigate the relationship between a strength and influence factors such as three kinds of gradation, age, unit cement and water contents with riverbed gravel in Hwa Buk dam. The results show that strength Properties of C.S.G is variously affected by these influence factors. Especially, gradation and water contents are found to be very important factors fur determining the strength of C.S.G material. And, from the results of experimental study, the correlation equations between uncompressive strength and these factors are proposed.

A Study on the Characteristics of Shear Strength in Unsaturated Cohesive Soils (불포화 점성토의 전단강도 특성에 관한 연구)

  • 유범식;조덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.3
    • /
    • pp.96-104
    • /
    • 1981
  • In order to investigate the characteristics of the shear strength of the unsaturated cohesive soils which has mean characters of sand and clay widely used for banking, I selected soil samples from An-sung district and, against it, performed direct shear test and unconfined compression test changing grain size, compaction energy and moisture content and also performed triaxial compression test under optimum moisture content. The results are as follows; 1.As the passing percent of the No. 200 sieve increased from 23.6% to 56.1%, cohesion increased from 0. 202kg/cm2 to 0. 398kg/cm2 under the direct shear test and from 0.38 kg/cm2 to 1. 05kg/cm2 under the tria4al compression test, internal friction angle decreased from 44. 78$^{\circ}$ to 34. 34$^{\circ}$ under the direct shear test and from 31. 88$^{\circ}$ to 13. 31$^{\circ}$ under the triaxial compression test. 2.Cohesion showed it's maximum value around OMC and internal friction angle showed a tendency to increase according to the decrease of water content but it's increasing ratio was relatively slow. 3.Decreasing ratio of cohesion and internal friction angle was relatively sensitive according to the decrease of compaction energy. 4.The smaller of the vertical stress and the coarser of the grain size of samples, changing of the volume showed a tendency to increase and as the increase of water content, the shear displacement (dh) at failure shear stress ($\tau$f) showed maximum and the $\tau$f-dh curve was gentle. 5.To synthesize the results of the direct shear test and the triaxial compression test, cohesion showed higher under the triaxial compression test and internal friction angle showed a tendeney to appear higher under the direct shear test. It seems that we can get correspondent results by removing the side friction of mold with soils and adjusting the vertical stress and shearing speed under the direct shear test.

  • PDF

The study on the Crushability of Weathered Cranite Soils (화강암질 풍화토의 파쇄성에 관한 연구)

  • 도덕현;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-103
    • /
    • 1979
  • The weathered granite soil involves problems in its stability in soil structures depending upon the reduction of soil strength due to the water absorption, crushability, and content of colored mineral and feldspar. As an attemt to solve the problems associated with soil stability, the crushability of weathered granite soil was investigated by conducting tests such as compaction test, CBR test, unconfined compression test, direct shear test, triaxial compression test, and permeability test on the five soil samples different in weathering and mineral compositions. The experimental results are summarized as follows: The ratio of increasing dry density in the weathered granite soil was high as the compaction energy was low, while it was low as the compaction energy was increased. The unconfined compressive strength. and CBR value were highest in the dry side rather than in the soil with the optimum moisture content, when the soil was compacted by adjusting water content. However, the unconfined compressive strength of smples, which were compacted and oven dried, were highest in the wet side rather than in soil with the optimum moisture content. As the soil becomes coarse grain, the ratio of specific surface area increased due to increased crushability, and the increasing ratio of the specific surface area decreased as the compaction energy was increased. The highest ratio of grain crushability was attained in the wet side rather than in the soil with the optimum moisture content. Such tendency was transforming to the dry side as the compaction energy was increased. The effect of water on the grain crushability of soil was high in the coarse grained soil. The specific surface area of WK soil sample, when compacted under the condition of air dried and under the optimum moisture content, was constant regardless of the compaction energy. When the weathered granite soil and river sand with the same grain size were compacted with low compaction energy, the weathered granite soil with crushability had higher dry density than river sand. However, when the compaction energy reached to certain point over limitation, the river sand had higher dry density than the weathered granite soil. The coefficient of permeability was lowest in the wet side rather than in the optimum moisture content, when the soil was compacted by adjusting soil water content. The reduction of permeability of soil due to the compaction was more apparent in the weathered granite soil than in the river sand. The highly significant correlation coefficient was obtained between the amount of particle breakage and dry density of the compacted soil.

  • PDF

Unconfined Compressive Strength of Fiber-reinforced Cemented Sands by Fiber Reinforcement Form (섬유의 보강 형태에 따른 섬유-시멘트 혼합토의 일축압축강도특성)

  • Park, Sung-Sik;Kim, Young-Su;Lee, Jong-Cheon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.159-169
    • /
    • 2007
  • The behavior of fiber-reinforced cemented sands (FRCS) was studied to improve a brittle failure mode observed in cemented sands. Nak-dong River sand was mixed with ordinary Portland cement and a Polyvinyl alcohol (PVA) fiber. A PVA fiber is widely used in concrete and cement reinforcement. It has a good adhesive property to cement and a specific gravity of 1.3. A PVA fiber has a diameter of 0.1 mm that is thicker than general PVA fiber for reinforced cement. Clean Nak-dong River sand, cement and fiber at optimum water content were compacted in 5 layers giving 55 blows per layer. They were cured for 7 days. Cemented sands with a cement/sand ratio of 4% were fiber-reinforced at different locations and tested for unconfined compression tests. The effect of fiber reinforcement form and distribution on strength was investigated. A specimen with evenly distributed fiber showed two times more strength than not-evenly reinforced specimen. The strength of fiber-reinforced cemented sands increases as fiber reinforcement ratio increases. A fully reinforced specimen was 1.5 times stronger than a specimen reinforced at only middle part. FRCS behavior was controlled not only by a dosage of fiber but also by fiber distribution methods or fiber types.

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Effect of Fines on Unconfined Compressive Strength of Cemented Sands (세립분이 고결모래의 일축압축강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Sun-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.213-220
    • /
    • 2011
  • Fines such as silt or clay are usually mixed with granular particles in natural or reclaimed soils which are slightly cemented. Such fines contained within weakly cemented soils may influence permeability and also mechanical behavior of the soils. In this study, a series of unconfined compression tests on weakly cemented sands with fines are carried out in order to evaluate the effect of fines on unconfined compressive strength (UCS) of cemented soils. Two different cement ratios and fine types were used and fine contents varied by 5, 10, and 15%. Two types of specimens were prepared in this testing. One is the specimen with the same compaction energy applied. The other is the one with the same dry density by varying compaction energy. When the same amount of compaction energy was applied to a specimen, its density increased as a fine content increased. As a result, the UCS of cemented soils with fines increased up to 2.6 times that of one without fines as an amount of fines increased. However, when the specimen was prepared to have the same density, its UCS slightly decreased and then increased a little as a fine content increased. Under the same conditions, a UCS of the specimen with silt was stronger than the one with kaolin. As a cement ratio increased, a UCS increased regardless of fine type and content.